Question 17.3: For the network of Fig. 17.64 , if VBB = 12 V, R = 20 kΩ, C ...

For the network of Fig. 17.64 , if V_{B B}=12 V , R=20 k \Omega, C=1 \mu F, R_{K}=100 \Omega, R_{B_{1}}=10 k \Omega, R_{B_{2}}=5 k \Omega, I_{P}=100 \mu A , V_{V}=1 V , \text { and } I_{V}=5.5 mA , determine:

a. V_P .
b. R_{max} and R_{min} .
c. T and frequency of oscillation.
d. The waveforms of v_{A}, v_{G}, and v_{K} .

17.64
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. Eq. (17.20): V_{P}=\eta V_{B B}+V_{D}

 

=\frac{R_{B_{1}}}{R_{B_{1}}+R_{B_{2}}} V_{B B}+0.7 V

 

=\frac{10 k \Omega}{10 k \Omega+5 k \Omega}(12 V )+0.7 V

=(0.67)(12 V )+0.7 V = 8 . 7 V

b. From Eq. (17.25):   R_{\max }=\frac{V_{B B}-V_{P}}{I_{P}}

 

=\frac{12 V -8.7 V }{100 \mu A }= 3 3 k \Omega

From Eq. (17.26):  R_{\min }=\frac{V_{B B}-V_{V}}{I_{V}}

 

=\frac{12 V -1 V }{5.5 mA }= 2 k \Omega

R: 2 k Ω < 20 k Ω < 33 k Ω

c. Eq. (17.23):  T=R C \log _{e} \frac{V_{B B}}{V_{B B}-V_{P}}

 

=(20 k \Omega)(1 \mu F ) \log _{e} \frac{12 V }{12 V -8.7 V }

 

=20 \times 10^{-3} \log _{e}(3.64)

 

=20 \times 10^{-3}(1.29)

= 25.8 ms

f=\frac{1}{T}=\frac{1}{25.8 ms }= 3 8 . 8 ~ H z

d. Indicated in Fig. 17.67 .

17.67

Related Answered Questions