Question 5.22: For the network of Fig. 5.118 , determine the following para...
For the network of Fig. 5.118 , determine the following parameters using the complete hybrid equivalent model and compare to the results obtained using the approximate model.
a. Z_i and Z_{i}^{\prime}.
b. A_{v} .
c. A_i = I_o/I_i .
d. Z_{o}^{\prime} (within R_C ) and Z_o (including R_C ).

Learn more on how we answer questions.
Now that the basic equations for each quantity have been derived, the order in which they are calculated is arbitrary. However, the input impedance is often a useful quantity to know, and therefore will be calculated first. The complete common-emitter hybrid equivalent circuit has been substituted and the network redrawn as shown in Fig. 5.119 . A Thévenin equivalent circuit for the input section of Fig. 5.119 results in the input equivalent of Fig. 5.120 because E_{ Th } \cong V_{s} and R_{ Th } \cong R_{s}=1 k \Omega (a result of R_{B}=470 k \Omega being much greater than R_{s}=1 k \Omega). In this example, R_L = R_C, and I_o is defined as the current through R_C as in previous examples of this chapter. The output impedance Z_o as defined by Eq. (5.170) is for the output transistor terminals only. It does not include the effects of R_C . Z_o is simply the parallel combination of Z_o and R_L . The resulting configuration of Fig. 5.120 is then an exact duplicate of the defining network of Fig. 5.117 , and the equations derived above can be applied.
a. Eq. (5.169):
Z_{i}=\frac{V_{i}}{I_{i}}=h_{i}-\frac{h_{f} h_{r} R_{L}}{1+h_{o} R_{L}}Z_{i}=\frac{V_{i}}{I_{i}}=h_{i e}-\frac{h_{f e} h_{r e} R_{L}}{1+h_{o e} R_{L}}
=1.6 k \Omega-\frac{(110)\left(2 \times 10^{-4}\right)(4.7 k \Omega)}{1+(20 \mu S )(4.7 k \Omega)}
= 1.6 k Ω- 94.52 Ω
= 1.51 k Ω
versus 1.6 kΩ using simplyh_{i e}; and
Z_{i}^{\prime}=470 k \Omega \| Z_{i} \cong Z_{i}=1.51 k \Omegab. Eq. (5.168):
A_{v}=\frac{V_{o}}{V_{i}}=\frac{-h_{fe} R_{L}}{h_{i}+\left(h_{i} h_{o}-h_{f} h_{r}\right) R_{L}}=\frac{-(110)(4.7 k \Omega)}{1.6 k \Omega+\left[(1.6 k \Omega)(20 \mu S )-(110)\left(2 \times 10^{-4}\right)\right] 4.7 k \Omega}
=\frac{-517 \times 10^{3} \Omega}{1.6 k \Omega+(0.032-0.022) 4.7 k \Omega}
=\frac{-517 \times 10^{3} \Omega}{1.6 k \Omega+47 \Omega}
= – 313.9
versus -323.125 using A_{v} \cong-h_{f e} R_{L} / h_{i e}.
c. Eq. (5.167):
A_{i}=\frac{I_{o}}{I_{i}}=\frac{h_{f}}{1+h_{o} R_{L}}A_{i}^{\prime}=\frac{I_{o}}{I_{i}^{\prime}}=\frac{h_{f e}}{1+h_{o e} R_{L}}=\frac{110}{1+(20 \mu S)(4.7 k \Omega)}
=\frac{110}{1+0.094}= 1 0 0 . 5 5
versus 110 using simply h_{f e}. Because 470 k \Omega \gg Z_{i}^{\prime}, I_{i} \cong I_{i}^{\prime} and A_{i} \cong 100.55 also.
d. Eq. (5.170):
Z_{o}=\frac{V_{o}}{I_{o}}=\frac{1}{h_{o}-\left[h_{f} h_{r} /\left(h_{i}+R_{s}\right)\right]} (5.170)
Z_{o}^{\prime}=\frac{V_{o}}{I_{o}}=\frac{1}{h_{o e}-\left[h_{f e} h_{r e} /\left(h_{i e}+R_{s}\right)\right]}
=\frac{1}{20 \mu S -\left[(110)\left(2 \times 10^{-4}\right) /(1.6 k \Omega+1 k \Omega)\right]}
=\frac{1}{20 \mu S-8.46 \mu S}
=\frac{1}{11.54 \mu S }
= 86.66 kΩ
which is greater than the value determined from 1 / h_{o e}, 50 k \Omega; and
Z_{o}=R_{C}\left\|Z_{o}^{\prime}=4.7 k \Omega\right\| 86.66 k \Omega=4.46 k \Omegaversus 4.7 kΩ using only R_C .


