Question 9.S-P.3: For the uniform beam AB, (a) determine the reaction at A, (b...

For the uniform beam AB, (a) determine the reaction at A, (b) derive the equation of the elastic curve, (c) determine the slope at A. (Note that the beam is statically indeterminate to the first degree.)

9.3
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Bending Moment.     Using the free body shown, we write

+\circlearrowright ∑M_D =0:                  R_{A} x-\frac{1}{2}\left(\frac{w_{0} x^{2}}{L}\right) \frac{x}{3}-M=0                    M=R_{A} x-\frac{w_{0} x^{3}}{6 L}

Differential Equation of the Elastic Curve.     We use Eq. (9.4) and write

\frac{d^{2} y}{d x^{2}}=\frac{M(x)}{E I}                          (9.4)

 

E I \frac{d^{2} y}{d x^{2}}=R_{A} x-\frac{w_{0} x^{3}}{6 L}

Noting that the flexural rigidity EI is constant, we integrate twice and find

E I \frac{d y}{d x}=E I u =\frac{1}{2} R_{A} x^{2}-\frac{w_{0} x^{4}}{24 L}+C_{1}                        (1)

 

E I y=\frac{1}{6} R_{A} x^{3}-\frac{w_{0} x^{5}}{120 L}+C_{1} x+C_{2}                        (2)

Boundary Conditions.     The three boundary conditions that must be satisfied are shown on the sketch

[x = 0, y = 0] :            C_{2}=0                  (3)

[x = L, u = 0] :           \frac{1}{2} R_{A} L^{2}-\frac{w_{0} L^{3}}{24}+C_{1}=0                  (4)

[x = L, y = 0] :            \frac{1}{6} R_{A} L^{3}-\frac{w_{0} L^{4}}{120}+C_{1} L+C_{2}=0                     (5)

a. Reaction at A.     Multiplying Eq. (4) by L, subtracting Eq. (5) member by member from the equation obtained, and noting that C_{2}=0, we have

\frac{1}{3} R_{A} L^{3}-\frac{1}{30} w_{0} L^{4}=0                    R _{A}=\frac{1}{10} w_{0} L \uparrow

We note that the reaction is independent of E and I. Substituting R_{A}=\frac{1}{10} w_{0} L into Eq. (4), we have

\frac{1}{2}\left(\frac{1}{10} w_{0} L\right) L^{2}-\frac{1}{24} w_{0} L^{3}+C_{1}=0                          C_{1}=-\frac{1}{120} w_{0} L^{3}

b. Equation of the Elastic Curve. Substituting for R_{A}, C_{1} and C_{2} into Eq. (2), we have

E I y=\frac{1}{6}\left(\frac{1}{10} w_{0} L\right) x^{3}-\frac{w_{0} x^{5}}{120 L}-\left(\frac{1}{120} w_{0} L^{3}\right) x

 

y=\frac{w_{0}}{120 E I L}\left(-x^{5}+2 L^{2} x^{3}-L^{4} x\right)

 

c. Slope at A.     We differentiate the above equation with respect to x:

u =\frac{d y}{d x}=\frac{w_{0}}{120 E I L}\left(-5 x^{4}+6 L^{2} x^{2}-L^{4}\right)

 

Making x = 0 , we have            u _{A}=-\frac{w_{0} L^{3}}{120 E I}                      u _{A}=\frac{w_{0} L^{3}}{120 E I} c

9.31
9.32
9.33

Related Answered Questions

Question: 9.S-P.7

Verified Answer:

Principle of Superposition.     The given loading ...
Question: 9.13

Verified Answer:

Determination of Point K Where Slope Is Zero. We r...
Question: 9.S-P.8

Verified Answer:

Principle of Superposition.     The reaction [late...
Question: 9.S-P.9

Verified Answer:

Principle of Superposition.     Assuming the axial...
Question: 9.14

Verified Answer:

We consider the couple exerted at the fixed end A ...
Question: 9.10

Verified Answer:

We replace the given loading by the two equivalent...