Question 9.S-P.8: For the uniform beam and loading shown, determine (a) the re...

For the uniform beam and loading shown, determine (a) the reaction at each support, (b) the slope at end A.

9.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Principle of Superposition.     The reaction R_B is designated as redundant and considered as an unknown load. The deflections due to the distributed load and to the reaction R_B are considered separately as shown below.

For each loading the deflection at point B is found by using the table of Beam Deflections and Slopes in Appendix D.

Beam Deflections and Slopes
Beam and Loading Elastic Curve Maximum Deflection Slope at End Equation of Elastic Curve
-\frac{P L^{3}}{3 E I} -\frac{P L^{2}}{2 E I} y=\frac{P}{6 EI}\left(x^{3}-3 L x^{2}\right)
-\frac{w L^{4}}{8 E I} -\frac{w L^{3}}{6 E I} y=-\frac{w}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}\right)
-\frac{M L^{2}}{2 E I} -\frac{M L}{E I} y=-\frac{M}{2 E I} x^{2}
-\frac{P L^{3}}{48 E I} \pm \frac{P L^{2}}{16 E I} For x \leq \frac{1}{2} L :

y=\frac{P}{48 E I}\left(4 x^{3}-3 L^{2} x\right)

For a > b:

-\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} E I L}

at x_{m}=\sqrt{\frac{L^{2}-b^{2}}{3}}

u _{A}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 E I L}

 

u_{B}=+\frac{P a\left(L^{2}-a^{2}\right)}{6 E I L}

For x < a:

y=\frac{P b}{6 E I L}\left[x^{3}-\left(L^{2}-b^{2}\right) x\right]

For x = a: y=-\frac{P a^{2} b^{2}}{3 E I L}

-\frac{5 w L^{4}}{384 E I} \pm \frac{w L^{3}}{24 E I} y=-\frac{w}{24 E I}\left(x^{4}-2 L x^{3}+L^{3} x\right)
\frac{M L^{2}}{9 \sqrt{3} E I} u _{A}=+\frac{M L}{6 E I}

 

u _{B}=-\frac{M L}{3 E I}

y=-\frac{M}{6 E I L}\left(x^{3}-L^{2} x\right)

Distributed Loading.     We use case 6, Appendix D

y=-\frac{w}{24 E I}\left(x^{4}-2 L x^{3}+L^{3} x\right)

At point B, x=\frac{2}{3} L:

\left(y_{B}\right)_{w}=-\frac{w}{24 E I}\left[\left(\frac{2}{3} L\right)^{4}-2 L\left(\frac{2}{3} L\right)^{3}+L^{3}\left(\frac{2}{3} L\right)\right]=-0.01132 \frac{w L^{4}}{E I}

 

Redundant Reaction Loading. From case 5, Appendix D, with a=\frac{2}{3} L and b=\frac{1}{3} L, we have

\left(y_{B}\right)_{R}=-\frac{P a^{2} b^{2}}{3 E I L}=+\frac{R_{B}}{3 E I L}\left(\frac{2}{3} L\right)^{2}\left(\frac{L}{3}\right)^{2}=0.01646 \frac{R_{B} L^{3}}{E I}

 

a. Reactions at Supports.     Recalling that y_B = 0, we write

y_{B}=\left(y_{B}\right)_{w}+\left(y_{B}\right)_{R}

 

0=-0.01132 \frac{w L^{4}}{E I}+0.01646 \frac{R_{B} L^{3}}{E I}                              R _{B}=0.688 w L \uparrow

Since the reaction R_B is now known, we may use the methods of statics to determine the other reactions:

R _{A}=0.271 w L \uparrow              R _{C}=0.0413 w L \uparrow

b. Slope at End A.     Referring again to Appendix D, we have

Distributed Loading.    \left( u _{A}\right)_{w}=-\frac{w L^{3}}{24 E I}=-0.04167 \frac{w L^{3}}{E I}

Redundant Reaction Loading.    For P=-R_{B}=-0.688 w L and b=\frac{1}{3} L

 

\left( u _{A}\right)_{R}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 E I L}=+\frac{0.688 w L}{6 E I L}\left(\frac{L}{3}\right)\left[L^{2}-\left(\frac{L}{3}\right)^{2}\right]                        \left( u _{A}\right)_{R}=0.03398 \frac{w L^{3}}{E I}

Finally, u _{A}=\left( u _{A}\right)_{w}+\left( u _{A}\right)_{R}

 

u _{A}=-0.04167 \frac{w L^{3}}{E I}+0.03398 \frac{w L^{3}}{E I}=-0.00769 \frac{w L^{3}}{E I}                            u_{A}=0.00769 \frac{w L^{3}}{E I} c

9.81
9.82

Related Answered Questions

Question: 9.S-P.7

Verified Answer:

Principle of Superposition.     The given loading ...
Question: 9.13

Verified Answer:

Determination of Point K Where Slope Is Zero. We r...
Question: 9.S-P.9

Verified Answer:

Principle of Superposition.     Assuming the axial...
Question: 9.14

Verified Answer:

We consider the couple exerted at the fixed end A ...
Question: 9.10

Verified Answer:

We replace the given loading by the two equivalent...