Question 11.SP.7: For the uniform beam and loading shown, determine the reacti...
For the uniform beam and loading shown, determine the reactions at the supports.

Learn more on how we answer questions.
Castigliano’s Theorem. The beam is indeterminate to the first degree and we choose the reaction \mathbf{R}_{A} as redundant. Using Castigliano’s theorem, we determine the deflection at A due to the combined action of \mathbf{R}_{A} and the distributed load. Since E I is constant, we write
y_{A}=\int \frac{M}{E I}\left(\frac{\partial M}{\partial R_{A}}\right) d x=\frac{1}{E I} \int M \frac{\partial M}{\partial R_{A}} d x (1)
The integration will be performed separately for portions A B and B C of the beam. Finally, \mathbf{R}_{A} is obtained by setting y_{A} equal to zero.
Free Body: Entire Beam. We express the reactions at B and C in terms of R_{A} and the distributed load
R_{B}=\frac{9}{4} w L-3 R_{A} \quad R_{C}=2 R_{A}-\frac{3}{4} w L (2)
Portion AB of Beam. Using the free-body diagram shown, we find
M_{1}=R_{A} x-\frac{w x^{2}}{2} \quad \frac{\partial M_{1}}{\partial R_{A}}=x
Substituting into Eq. (1) and integrating from A to B, we have
\frac{1}{E I} \int M_{1} \frac{\partial M}{\partial R_{A}} d x=\frac{1}{E I} \int_{0}^{L}\left(R_{A} x^{2}-\frac{w x^{3}}{2}\right) d x=\frac{1}{E I}\left(\frac{R_{A} L^{3}}{3}-\frac{w L^{4}}{8}\right) (3)
Portion BC of Beam. We have
M_{2}=\left(2 R_{A}-\frac{3}{4} w L\right) v-\frac{w v^{2}}{2} \quad \frac{\partial M_{2}}{\partial R_{A}}=2 v
Substituting into Eq. (1) and integrating from C, where v=0, to B, where v=\frac{1}{2} L, we have
\begin{aligned} \frac{1}{E I} \int M_{2} \frac{\partial M_{2}}{\partial R_{A}} d v & =\frac{1}{E I} \int_{0}^{L / 2}\left(4 R_{A} v^{2}-\frac{3}{2} w L v^{2}-w v^{3}\right) d v \\ & =\frac{1}{E I}\left(\frac{R_{A} L^{3}}{6}-\frac{w L^{4}}{16}-\frac{w L^{4}}{64}\right)=\frac{1}{E I}\left(\frac{R_{A} L^{3}}{6}-\frac{5 w L^{4}}{64}\right) & (4) \end{aligned}Reaction at \boldsymbol{A}. Adding the expressions obtained in (3) and (4), we determine y_{A} and set it equal to zero
y_{A}=\frac{1}{E I}\left(\frac{R_{A} L^{3}}{3}-\frac{w L^{4}}{8}\right)+\frac{1}{E I}\left(\frac{R_{A} L^{3}}{6}-\frac{5 w L^{4}}{64}\right)=0
Solving for R_{A}, \quad R_{A}=\frac{13}{32} w L \quad R_{A}=\frac{13}{32} w L \uparrow
Reactions at \boldsymbol{B} and \boldsymbol{C}. Substituting for R_{A} into Eqs. (2), we obtain
R_{B}=\frac{33}{32} w L \uparrow \quad R_{C}=\frac{w L}{16} \uparrow



