Question 5.5: Forces Between Cars in a Train Train cars are connected by c...

Forces Between Cars in a Train

Train cars are connected by couplers, which are under tension as the locomotive pulls the train. Imagine you are on a train speeding up with a constant acceleration. As you move through the train from the locomotive to the last car, measuring the tension in each set of couplers, does the tension increase, decrease, or stay the same? When the engineer applies the brakes, the couplers are under compression. How does this compression force vary from the locomotive to the last car? (Assume only the brakes on the wheels of the engine are applied.)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

While the train is speeding up, tension decreases from the front of the train to the back. The coupler between the locomotive and the first car must apply enough force to accelerate the rest of the cars. As you move back along the train, each coupler is accelerating less mass behind it. The last coupler has to accelerate only the last car, and so it is under the least tension.

When the brakes are applied, the force again decreases from front to back. The coupler connecting the locomotive to the first car must apply a large force to slow down the rest of the cars, but the final coupler must apply a force large enough to slow down only the last car.

Related Answered Questions