Question 2.34: Formally demonstrate that the sum of the forces acting on th...
Formally demonstrate that the sum of the forces acting on the rectangular loop shown and Figure 2-34 is identically equal to 0 which implies that this loop will not translate in any direction.

Learn more on how we answer questions.
The magnetic flux density is B = Bouz. Using the definition of the magnetic force given in (2.146), we write the sum of the forces that act on the four sides as
\textbf F _{\textbf {magnetic }}=\mathbf{-\int B \times I d I} (2.146)
\textbf F _{\textbf {magnetic }}=-\int_{1}^{2} \textbf B \times \textbf I \textbf d \textbf I -\int_{2}^{3} \textbf B \times\textbf I \textbf d \textbf I -\int_{3}^{4} \textbf B \times \textbf I \textbf d \textbf I -\int_{4}^{1} \textbf B \times \textbf I \textbf d \textbf I
=-\int_{+\Delta x / 2}^{-\Delta x / 2} I B_{0} \textbf u _{ \textbf z } \times d x \textbf u _{ \textbf x }-\int_{+\Delta y / 2}^{-\Delta y / 2}I B_{0} \textbf u _{ \textbf z } \times d y \textbf u _{ \textbf y }-\int_{-\Delta x / 2}^{+\Delta x / 2} I B_{0} \textbf u _{ \textbf z } \times d x \textbf u _{ \textbf x }-\int_{-\Delta y / 2}^{+\Delta y / 2}I B_{0} \textbf u _{ \textbf z } \times d y \textbf u _{ \textbf y }=0
Recall that the sign of the integral is determined by the limits of the integration.