Question 3.32: Give an affine transformation T(x ) = x0 + x A, where A =[-1...

Give an affine transformation

T\left(\overrightarrow{x}\right)=\overrightarrow{x_{0}}+\overrightarrow{x}A,  where  A =\left[\begin{matrix} -1 & 6 & -4 \\ 2 & 4 & -5 \\ 2 & 6 & -7 \end{matrix} \right].

Try to determine \overrightarrow{x_{0}} so that T is a two-way stretch. In this case, determine the line of invariant points and the invariant plane.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A has characteristic polynomial det \left(A-tI_{3}\right)=-\left(t-1\right)\left(t+2\right)\times\left(t+3\right), so A has eigenvalues −2,−3 and 1 and thus A is diagonalizable.

Since

I_{3}-A=\left[\begin{matrix} 2 & -6 & 4 \\ -2 & -3 & 5 \\ -2 & -6 & 8 \end{matrix} \right]

has rank equal to 2, the range of I_{3}-A is of dimension two. The range of I_{3}-A is

\overrightarrow{x}\left(I_{3}-A\right)=\overrightarrow{y},  where   \overrightarrow{x}=\left(x_{1},x_{2},x_{3}\right) and  \overrightarrow{y}=\left(y_{1},y_{2},y_{3}\right)

\Leftrightarrow y_{1}=2x_{1}-2x_{2}-2x_{3} , y_{2}=-6x_{1}-3x_{2}-6x_{3}, y_{3}=4x_{1}+5x_{2}+8x_{3}

\Leftrightarrow y_{1}+y_{2}+y_{3}=0

\Leftrightarrow \left(replace  y_{1},y_{2},y_{3}  by  x_{1},x_{2},x_{3}  respectively\right)

Im \left(I_{3}-A\right)=\left\{\overrightarrow{x}=\left(\overrightarrow{x_{1}},\overrightarrow{x_{2}},\overrightarrow{x_{3}}\right)\mid x_{1}+x_{2}+x_{3}=0 \right\}.

So, any point \overrightarrow{x_{0}} so that \overrightarrow{x_{0}} \in Im \left(I_{3}-A\right) will work.

Solving \overrightarrow{x}\left(A-I_{3}\right)=\overrightarrow{0}, get the corresponding eigenvector \overrightarrow{v_{3}} = \left(1,4,-3\right). Solving \overrightarrow{x}\left(A+2I_{3}\right)=\overrightarrow{0}, get  \overrightarrow{v_{1}} = \left(0,1,-1\right) and solving \overrightarrow{x}\left(A+3I_{3}\right)=\overrightarrow{0}, get \overrightarrow{v_{2}} = \left(1,0,-1\right).

For any \overrightarrow{x_{1}} such that \overrightarrow{x_{1}} \left(I_{3}-A\right)=\overrightarrow{x_{0}}  holds, T is a two-way stretch with

the line of invariant points: \overrightarrow{x_{1}}+\ll \overrightarrow{v_{3}}\gg, and

the invariant plane: \overrightarrow{x_{1}}+\ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg.

For example, take \overrightarrow{x_{0}} = \left(2,-3,1\right) and solve \overrightarrow{x}\left(I_{3}-A\right)=\left(2,-3,1\right) so that

\overrightarrow{x}=\left(x_{1},-3+4x_{1},2-3x_{1}\right)=\left(0,-3,2\right)+x_{1}\left(1,4,-3\right),  x_{1} \in R

\Rightarrow \left(0,-3,2\right)+\ll \left(1,4,-3\right)\gg,  where  \overrightarrow{x_{1}}=\left(0,-3,2\right)

is the line L of invariant points. On the other hand, the plane

\left(0,-3,2\right)+\ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg=\left\{\left(\alpha _{2},-3+\alpha _{1},2-\alpha _{1}-\alpha _{2}\right)\mid \alpha _{1},\alpha _{2} \in R\right\}

= \left\{\overrightarrow{x}=\left(x_{1},x_{2},x_{3}\right)\mid x_{1}+x_{2}+x_{3}=-1 \right\}

is an invariant plane.

Note Careful readers might have observed in Example 3.31 that, since \left(A-2I_{3}\right)\left(A-I_{3}\right)=O, Im \left(A-2I_{3}\right), Ker \left(A-I_{3}\right) and \ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg are the same plane 2x_{1}+x_{2}+x_{3}=0 and hence, the plane of invariant points is just a translation of it, namely 2x_{1}+x_{2}+x_{3}=-2. Refer to Fig. 3.62.

This is not accidental. This does happen in Example 3.32 too. Since

\left(A-I_{3}\right)\left(A+2I_{3}\right)\left(A+3I_{3}\right)=O_{3 \times 3}

\Rightarrow \left(since  r\left(A-I_{3}\right)=2\right)Im\left(A-I_{3}\right)=Ker\left(A+2I_{3}\right)\left(A+3I_{3}\right)

\Rightarrow \left(since  Ker \left(A+2I_{3}\right) \oplus Ker \left(A+3I_{3}\right) \subseteq  Ker \left(A+2I_{3}\right) \left(A+3I_{3}\right)\right)

Im \left(A-I_{3}\right) = Ker \left(A+2I_{3}\right) \oplus  \left(A+3I_{3}\right)=\ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg.

This justifies that both Im \left(A-I_{3}\right)  and  \ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg are the same plane x_{1}+x_{2}+x_{3}=0 as indicated above. As a consequence, all the planes parallel to it are invariant planes. See Fig. 3.65.

In the affine basis C = \left\{\overrightarrow{x_{1}},\overrightarrow{x_{1}}+\overrightarrow{v_{1}},\overrightarrow{x_{1}}+\overrightarrow{v_{2}},\overrightarrow{x_{1}}+\overrightarrow{v_{3}}\right\},

\left[T\left(\overrightarrow{x}\right)\right]_{C}=\left[\overrightarrow{x}\right]C\left[T\right]_{C},  where \left[T\right]_{C}=\left[\begin{matrix} -2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{matrix} \right] .

Try to answer the following questions:
Q1 What is the image of a plane parallel to the line of invariant points?
Q2 Is each plane containing the line of invariant points an invariant plane?

Q3 Where is the intersecting line of a plane, nonparallel to \overrightarrow{x_{1}}+ \ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg, with its image?

Q4 Let \overrightarrow{a_{0}} =\overrightarrow{x_{1}}=\left(0,-3,2\right), \overrightarrow{a_{1}} =\left(-1,-1,-1\right),\overrightarrow{a_{2}} =\left(1,-2,1\right) and \overrightarrow{a_{3}}=\overrightarrow{x_{1}}+\overrightarrow{v_{3}} =\left(1,1,-1\right). Find the image of the tetrahedron \Delta  \overrightarrow{a_{0}}\overrightarrow{a_{1}}\overrightarrow{a_{2}}\overrightarrow{a_{3}} and compute its volume.

For these, note that the inverse transformation of T is

\overrightarrow{x}=\left(\overrightarrow{y}-\left(2,-3,1\right)\right)A^{-1}, where \overrightarrow{y}=T\left(\overrightarrow{x}\right) and  A^{-1} =\frac{1}{6}\left[\begin{matrix} 2 & 18 & -14 \\ 4 & 15 & -13 \\ 4 & 18 & -16 \end{matrix} \right].

For Q1  Geometric intuition (see Fig. 3.65) suggests that the image of any such plane would be parallel to the plane. This can be proved analytically as follows.

A plane Σ parallel to the line L of invariant points has equation like \left(-4a_{2}+3a_{3}\right)x_{1}+a_{2}x_{2}+a_{3}x_{3}=b,     where b \neq -3a_{2}+2a_{3},a_{2},a_{3} \in R

The condition b \neq -3a_{2}+2a_{3} means that L is not coincident on Σ. Then

∑ \parallel  L

\Leftrightarrow \overrightarrow{x}\left[\begin{matrix} -4a_{2}+3a_{3} \\ a_{2} \\ a_{3} \end{matrix} \right]=b

\Leftrightarrow \left[\overrightarrow{y}-\left(2,-3,1\right)\right]A^{-1}\left[\begin{matrix} -4a_{2}+3a_{3} \\ a_{2} \\ a_{3} \end{matrix} \right] = \frac{1}{6}\left[\overrightarrow{y}-\left(2,-3,1\right)\right]\left[\begin{matrix} 10a_{2}-8a_{3} \\-a_{2}-a_{3}\\ 2a_{2}-4a_{3} \end{matrix} \right]=b

\Leftrightarrow \left(10a_{2}-8a_{3}\right)y_{1}-\left(a_{2}+a_{3}\right)y_{2}+\left(2a_{2}-4a_{3}\right)y_{3}=6b+25a_{2}-17a_{3}

\Rightarrow \left(let  \alpha _{2}=-a_{2}-a_{3}, \alpha _{3}=2a_{2}-4a_{3}\right)

\left(-4 \alpha _{2}+3 \alpha _{3}\right) x_{1}+\alpha _{2} x_{2}+\alpha _{3} x_{3}=6b+25a_{2}-17a_{3},

where 6b+25a_{2}-17a_{3} \neq -18 a_{2}+12a_{3}+25a_{2}-17a_{3}=-3\alpha _{2}+2\alpha _{3}.Hence, the image plane T\left(∑\right)\parallel ∑\parallel L. See Note below.

Note (refer to Note in Example 3.31) It is easy to see that

∑ \parallel \ll \overrightarrow{v_{3}},\overrightarrow{v_{1}}\gg \Leftrightarrow a_{2}=a_{3}.

Hence, Σ has equation -ax_{1}+ax_{2}+ax_{3}=b,  where a≠ 0, or equivalently, x_{1}-x_{2}-x_{3}=b with -\frac{b}{a} replacing by b ≠ 1. Let \overrightarrow{n} = \left(1,-1,-1\right) be the normal to these parallel planes. Then

\overrightarrow{v_{3}} \in Ker \left(A-I_{3}\right)=Im \left(A^{*}-I_{3}\right) ^{\bot} and

\overrightarrow{v_{1}} \in Ker \left(A+2I_{3}\right)=Im \left(A^{*}+2I_{3}\right) ^{\bot}

\Rightarrow \overrightarrow{n} \in Im \left(A^{*}-I_{3}\right) \cap  Im \left(A^{*}+2I_{3}\right) = Ker \left(A^{*}+3I_{3}\right)

\Rightarrow \overrightarrow{n}A^{*}=-3\overrightarrow{n}

\Rightarrow A\overrightarrow{n^{*} } =-3\overrightarrow{n^{*} }

\Rightarrow A^{-1}\overrightarrow{n^{*} } =-\frac{1}{3}\overrightarrow{n^{*} }.

Similarly,

∑ \parallel \ll \overrightarrow{v_{3}},\overrightarrow{v_{2}}\gg \Leftrightarrow 2a_{2}-a_{3}=0.

\Rightarrow ∑  has  equation  2x_{1}+x_{2}+2x_{3}=b,  b ≠ 1.

\Rightarrow A^{-1}\overrightarrow{u^{*} }=-\frac{1}{2}\overrightarrow{u^{*} },   where  \overrightarrow{u }= \left(2,1,2\right), the normal vector.

For Q2  The answer is negative in general except the planes \overrightarrow{x_{1}}+\ll \overrightarrow{v_{3}},\overrightarrow{v_{1}}\gg and \overrightarrow{x_{1}}+\ll \overrightarrow{v_{3}},\overrightarrow{v_{2}}\gg which are invariant planes. But each such plane and its image plane intersect along the line L of invariant points. Q_{1}answers all these claims.

For Q3 For simplicity, take x_{3}=0 as a sample plane. The plane x_{3}=0 intercepts the line L at the point \left(\frac{2}{3},-\frac{1}{3},0\right) and intersects the plane \overrightarrow{x_{1}}+\ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg along the line x_{3}=0, x_{1}+x_{2}+x_{3}=-1. To find its image under T,

x_{3}= \overrightarrow{x}\left[\begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right]=0

\Leftrightarrow \left[\overrightarrow{y}-\left(2,-3,1\right)\right]A^{-1}\left[\begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right]=\frac{1}{6} \left[\overrightarrow{y}-\left(2,-3,1\right)\right]\left[\begin{matrix} -14 \\ -13 \\ -16 \end{matrix} \right]=0

\Rightarrow \left(replace \overrightarrow{y} by \overrightarrow{x}\right) 14x_{1}+13x_{2}+16x_{3}=5.

This image plane does intercept the line L at the invariant point \left(\frac{2}{3},-\frac{1}{3},0\right) and intersects the original plane x_{3}=0 along the line x_{3}= 0.14x_{1}+13x_{2}+16x_{3}=5.

For Q4 By computation,

T\left(\overrightarrow{a_{0}}\right)=\overrightarrow{x_{1}}=\left(0,-3,2\right),

T\left(\overrightarrow{a_{1}}\right)=\left(0,-3,2\right)+\left(-1,-1,-1\right)A=\left(-3,-19,18\right),

T\left(\overrightarrow{a_{2}}\right)=\left(0,-3,2\right)+ \left(1,-2,1\right)A=\left(-3,1,1\right),

T\left(\overrightarrow{a_{3}}\right)=\overrightarrow{x_{1}}+ \overrightarrow{v_{3}}=\left(1,1,-1\right).

Then,

The signed volume of \Delta \overrightarrow{a_{0}}\overrightarrow{a_{1}}\overrightarrow{a_{2}}\overrightarrow{a_{3}}

= \left|\begin{matrix} \overrightarrow{a_{1}}-\overrightarrow{a_{0}} \\ \overrightarrow{a_{2}}-\overrightarrow{a_{0}}\\ \overrightarrow{a_{3}}-\overrightarrow{a_{0}} \end{matrix} \right|=\left|\begin{matrix} -1 & 2 & -3 \\ 1 & 1 & -1 \\ 1 & 4 & -3 \end{matrix} \right| =-6,  and

the signed volume of \Delta T\left(\overrightarrow{a_{0}}\right)T\left(\overrightarrow{a_{1}}\right)T\left(\overrightarrow{a_{2}}\right)T\left(\overrightarrow{a_{3}}\right)

=\left|\begin{matrix} -3 & -16 & 16 \\ -3 & 4 & -1 \\ 1 & 4 & -3 \end{matrix} \right| =-36.

\Rightarrow \frac{ The  signed  volume  of  \Delta T\left(\overrightarrow{a_{0}}\right) \ldots T\left(\overrightarrow{a_{3}}\right)}{ The  signed  volume  of  \Delta\overrightarrow{a_{0}}\ldots \overrightarrow{a_{3}} } = \frac{-36}{-6}=6=detA.

8
13

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...
Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...