Question 6.1: Given a sample of size n = 51 yielding a sample variance s² ...
Given a sample of size n = 51 yielding a sample variance s² = 81, we may calculate the 95% confidence interval for the population variance as follows.
Learn more on how we answer questions.
Since we are using the 95% confidence level the critical values cutting off the extreme 5% of the distribution are 32.36 and 71.42, from Table A4. We can therefore use equation (6.3) to find the interval
\left[\frac{(n-1)s^{2}}{32.85}\leqslant\sigma^{2}\leqslant\frac{(n-1)s^{2}}{8.91}\right] (6.3)
\left[\frac{(n-1)\times s^{2}}{71.42}\leqslant\sigma^{2}\frac{(n-1)\times s^{2}}{32.36}\right]Substituting in the values gives
\left[\frac{(51-1)\times81}{71.42}\leqslant\sigma^{2}\frac{(51-1)\times81}{32.36}\right]yielding a confidence interval of [56.71, 125.15].
Note that if we wished to find a 95% confidence interval for the standard deviation we can simply take the square root of the result to obtain [7.53, 11.19].
The 99% CI for the variance can be obtained by altering the critical values.
The values cutting off 0.5% in each tail of the distribution are (again from Table A4) 27.99 and 79.49. Using these critical values results in an interval [50.95, 144.69]. Note that, as expected, the 99% CI is wider than the 95% interval.
Table A4 Critical values of the \chi^{2} distribution | |||||||
The values in the table give the critical values of \chi^{2} which cut off the area in the right-hand tail given at the top of the column. |
![]() |
||||||
Area in right-hand tail | |||||||
v | 0.995 | 0.990 | 0.975 | 0.950 | 0.900 | 0.750 | 0.500 |
1 | 392 704.10^{−10} | 157 088.10^{−9} | 982 069.10^{−9} | 393 214.10^{−8} | 0.0157908 | 0.1015308 | 0.454936 |
2 | 0.0100251 | 0.0201007 | 0.0506356 | 0.102587 | 0.210721 | 0.575364 | 1.38629 |
3 | 0.0717218 | 0.114832 | 0.215795 | 0.351846 | 0.584374 | 1.212534 | 2.36597 |
4 | 0.206989 | 0.297109 | 0.484419 | 0.710723 | 1.063623 | 1.92256 | 3.35669 |
5 | 0.411742 | 0.554298 | 0.831212 | 1.145476 | 1.61031 | 2.67460 | 4.35146 |
6 | 0.675727 | 0.872090 | 1.23734 | 1.63538 | 2.20413 | 3.45460 | 5.34812 |
7 | 0.989256 | 1.239043 | 1.68987 | 2.16735 | 2.83311 | 4.25485 | 6.34581 |
8 | 1.34441 | 1.64650 | 2.17973 | 2.73264 | 3.48954 | 5.07064 | 7.34412 |
9 | 1.73493 | 2.08790 | 2.70039 | 3.32511 | 4.16816 | 5.89883 | 8.34283 |
10 | 2.15586 | 2.55821 | 3.24697 | 3.94030 | 4.86518 | 6.73720 | 9.34182 |
11 | 2.60322 | 3.05348 | 3.81575 | 4.57481 | 5.57778 | 7.58414 | 10.3410 |
12 | 3.07382 | 3.57057 | 4.40379 | 5.22603 | 6.30380 | 8.43842 | 11.3403 |
13 | 3.56503 | 4.10692 | 5.00875 | 5.89186 | 7.04150 | 9.29907 | 12.3398 |
14 | 4.07467 | 4.66043 | 5.62873 | 6.57063 | 7.78953 | 10.1653 | 13.3393 |
15 | 4.60092 | 5.22935 | 6.26214 | 7.26094 | 8.54676 | 11.0365 | 14.3389 |
16 | 5.14221 | 5.81221 | 6.90766 | 7.96165 | 9.31224 | 11.9122 | 15.3385 |
17 | 5.69722 | 6.40776 | 7.56419 | 8.67176 | 10.0852 | 12.7919 | 16.3382 |
18 | 6.26480 | 7.01491 | 8.23075 | 9.39046 | 10.8649 | 13.6753 | 17.3379 |
19 | 6.84397 | 7.63273 | 8.90652 | 10.1170 | 11.6509 | 14.5620 | 18.3377 |
20 | 7.43384 | 8.26040 | 9.59078 | 10.8508 | 12.4426 | 15.4518 | 19.3374 |
21 | 8.03365 | 8.89720 | 10.28293 | 11.5913 | 13.2396 | 16.3444 | 20.3372 |
22 | 8.64272 | 9.54249 | 10.9823 | 12.3380 | 14.0415 | 17.2396 | 21.3370 |
23 | 9.26043 | 10.19567 | 11.6886 | 13.0905 | 14.8480 | 18.1373 | 22.3369 |
24 | 9.88623 | 10.8564 | 12.4012 | 13.8484 | 15.6587 | 19.0373 | 23.3367 |
25 | 10.5197 | 11.5240 | 13.1197 | 14.6114 | 16.4734 | 19.9393 | 24.3266 |
26 | 11.1602 | 12.1981 | 13.8439 | 15.3792 | 17.2919 | 20.8434 | 25.3365 |
27 | 11.8076 | 12.8785 | 14.5734 | 16.1514 | 18.1139 | 21.7494 | 26.3363 |
28 | 12.4613 | 13.5647 | 15.3079 | 16.9279 | 18.9392 | 22.6572 | 27.3362 |
29 | 13.1211 | 14.2565 | 16.0471 | 17.7084 | 19.7677 | 23.5666 | 28.3361 |
30 | 13.7867 | 14.9535 | 16.7908 | 18.4927 | 20.5992 | 24.4776 | 29.3360 |
40 | 20.7065 | 22.1643 | 24.4330 | 26.5093 | 29.0505 | 33.6603 | 39.3353 |
50 | 27.9907 | 29.7067 | 32.3574 | 34.7643 | 37.6886 | 42.9421 | 49.3349 |
60 | 35.5345 | 37.4849 | 40.4817 | 43.1880 | 46.4589 | 52.2938 | 59.3347 |
70 | 43.2752 | 45.4417 | 48.7576 | 51.7393 | 55.3289 | 61.6983 | 69.3345 |
80 | 51.1719 | 53.5401 | 57.1532 | 60.3915 | 64.2778 | 71.1445 | 79.3343 |
90 | 59.1963 | 61.7541 | 65.6466 | 69.1260 | 73.2911 | 80.6247 | 89.3342 |
100 | 67.3276 | 70.0649 | 74.2219 | 77.9295 | 82.3581 | 90.1332 | 99.3341 |
v | 0.250 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
1 | 1.32330 | 2.70554 | 003.84146 | 5.02389 | 6.63490 | 7.87944 | 10.828 |
2 | 2.77259 | 4.60517 | 5.99146 | 7.37776 | 9.21034 | 10.5966 | 13.816 |
3 | 4.10834 | 6.25139 | 7.81473 | 9.34840 | 11.3449 | 12.8382 | 16.266 |
4 | 5.38527 | 7.77944 | 9.48773 | 11.1433 | 13.2767 | 14.8603 | 18.467 |
5 | 6.62568 | 9.23636 | 11.0705 | 12.8325 | 15.0863 | 16.7496 | 20.515 |
6 | 7.84080 | 10.6446 | 12.5916 | 14.4494 | 16.8119 | 18.5476 | 22.458 |
7 | 9.03715 | 12.0170 | 14.0671 | 16.0128 | 18.4753 | 20.2777 | 24.322 |
8 | 10.2189 | 13.3616 | 15.5073 | 17.5345 | 20.0902 | 21.9550 | 26.125 |
9 | 11.3888 | 14.6837 | 16.9190 | 19.0228 | 21.6660 | 23.5894 | 27.877 |
10 | 12.5489 | 15.9872 | 18.3070 | 20.4832 | 23.2093 | 25.1882 | 29.588 |
11 | 13.7007 | 17.2750 | 19.6751 | 21.9200 | 24.7250 | 26.7568 | 31.264 |
12 | 14.8454 | 18.5493 | 21.0261 | 23.3367 | 26.2170 | 28.2995 | 32.909 |
13 | 15.9839 | 19.8119 | 22.3620 | 24.7356 | 27.6882 | 29.8195 | 34.528 |
14 | 17.1169 | 21.0641 | 23.6848 | 26.1189 | 29.1412 | 31.3194 | 36.123 |
15 | 18.2451 | 22.3071 | 24.9958 | 27.4884 | 30.5779 | 32.8013 | 37.697 |
16 | 19.3689 | 23.5418 | 26.2962 | 28.8454 | 31.9999 | 34.2672 | 29.252 |
17 | 20.4887 | 24.7690 | 27.5871 | 30.1910 | 33.4087 | 35.7185 | 40.790 |
18 | 21.6049 | 25.9894 | 28.8693 | 31.5264 | 34.8053 | 37.1565 | 42.312 |
19 | 22.7178 | 27.2036 | 30.1435 | 32.8523 | 36.1909 | 38.5823 | 43.820 |
20 | 23.8277 | 28.4120 | 31.4104 | 34.1696 | 37.5662 | 39.9968 | 45.315 |
21 | 24.9348 | 29.6151 | 32.6706 | 35.4789 | 38.9322 | 41.4011 | 46.797 |
22 | 26.40393 | 30.8133 | 33.9244 | 36.7807 | 40.2894 | 42.7957 | 48.268 |
23 | 27.1413 | 32.0069 | 35.1725 | 38.0756 | 41.6384 | 44.1813 | 49.728 |
24 | 28.2412 | 33.1962 | 36.4150 | 39.3641 | 42.9798 | 45.5585 | 51.179 |
25 | 29.3389 | 34.3816 | 37.6525 | 40.6465 | 44.3141 | 46.9279 | 52.618 |
26 | 30.4346 | 35.5632 | 38.8851 | 41.9232 | 45.6417 | 48.2899 | 54.052 |
27 | 31.5284 | 36.7412 | 40.1133 | 43.1945 | 46.9629 | 49.6449 | 55.476 |
28 | 32.6205 | 37.9150 | 41.3371 | 44.4608 | 48.2782 | 50.9934 | 56.892 |
29 | 33.7109 | 39.0875 | 42.5570 | 45.7223 | 49.5879 | 52.3356 | 58.301 |
30 | 34.7997 | 40.2560 | 43.7730 | 46.9792 | 50.8922 | 53.6720 | 59.703 |
40 | 45.6160 | 51.8051 | 55.7585 | 59.3417 | 63.6907 | 66.7660 | 73.402 |
50 | 56.3336 | 63.1671 | 67.5048 | 71.4202 | 76.1539 | 79.4900 | 86.661 |
60 | 66.9815 | 74.3970 | 79.0819 | 83.2977 | 88.3794 | 91.9517 | 99.607 |
70 | 77.5767 | 85.5270 | 90.5312 | 95.0232 | 100.425 | 104.215 | 112.317 |
80 | 88.1303 | 96.5782 | 101.879 | 106.629 | 112.329 | 116.321 | 124.839 |
90 | 98.6499 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299 | 137.208 |
100 | 109.141 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 | 149.449 |