Question 9.4: Given the function (a) Sketch the function. (b) Determine it...

Given the function

f(x)=\begin{cases} 0, &  for                         −5 ≤ x ≤ 0,\\ 3, & for                     0 ≤ x ≤ 5 \end{cases}                    period 2l = 10

(a) Sketch the function.
(b) Determine its Fourier series.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

f(x)=\begin{cases} 0, &  for                         −5 ≤ x ≤ 0,\\ 3, & for                      0 ≤ x ≤ 5 \end{cases}                    period 2l = 10

(b) For period 2l = 10 and l = 5, we choose the interval a to a + 2l to be −5 to 5, i.e., a =−5:

a_{n} = \frac{1}{l} \int\limits_{a}^{a+2l}{f (x)  cos \frac{nπx}{l} dx} = \frac{1}{5} \int\limits_{-5}^{5}{f (x)  cos \frac{nπx}{l}dx}

 

= \frac{1}{5} \left\{\int\limits_{-5}^{0}{(0)  cos \frac{nπx}{5} dx} + \int\limits_{0}^{5}{3  cos \frac{nπx}{5} dx} \right\}= \frac{3}{5} \int\limits_{0}^{5}{cos \frac{nπx}{5}dx}

 

= \frac{3}{5} \left\{\frac{5}{nπ} sin \frac{nπx}{5}\right\}|^{5}_{0}=0       for             n ≠ 0.

For n = 0, one has a_{n} = a_{0} = (3/5) \int_{0}^{5}{cos(0πx/5)dx} = (3/5)  \int_{0}^{5}{ dx} = 3.
Furthermore,

b_{n} = \frac{1}{l} \int\limits_{a}^{a+2l}{ f (x)  sin \frac{nπx}{l} dx} = \frac{1}{5} \int\limits_{-5}^{5}{ f (x)  sin \frac{nπx}{l} dx}

 

= \frac{1}{5} \left\{\int\limits_{-5}^{0}{(0)  sin \frac{nπx}{5} dx} + \int\limits_{0}^{5}{3  sin \frac{nπx}{5} dx} \right\}= \frac{3}{5} \int\limits_{0}^{5}{sin \frac{nπx}{5}dx}

 

= \frac{3}{5} \left(− \frac{5}{nπ} cos \frac{nπx}{5}\right)|^{5}_{0} = \frac{3}{nπ} (1 −cos nπ).

Thus,

f (x) = \frac{3}{2}+ \sum\limits_{n=1}^{∞}{\frac{3}{nπ} (1 − cos nπ) sin \left(\frac{nπx}{5}\right)},

i.e.,

f (x) = \frac{3}{2}+ \frac{6}{π} \left(sin \frac{πx}{5}+ \frac{1}{3}sin \frac{3πx}{5} + \frac{1}{5}sin \frac{5πx}{5}+· · ·\right).
9.3

Related Answered Questions