Question 17.1: Given the relaxation oscillator of Fig. 17.45 : a. Determine...

Given the relaxation oscillator of Fig. 17.45 :

a. DetermineR_{B_{1}} and R_{B_{2}} at I_E = 0 A.

b. Calculate V_P , the voltage necessary to turn on the UJT.

c. Determine whether R_1 is within the permissible range of values as determined by Eq. (17.8) to ensure firing of the UJT.

\frac{V – V_V}{I_V} \lt R_1 \lt \frac{V-V_P}{I_P}                        (17.8)

d. Determine the frequency of oscillation if R_{B_{1}}=100 \Omega during the discharge phase.

e. Sketch the waveform of v_{ C } for a full cycle.

f. Sketch the waveform of v_{R_{2}} for a full cycle.

17.45
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. \eta=\frac{R_{B_{1}}}{R_{B_{1}}+R_{B_{2}}}

 

0.6=\frac{R_{B_{1}}}{R_{B B}}

 

R_{B_{1}}=0.6 R_{B B}=0.6(5 k \Omega)= 3 k \Omega

 

R_{B_{2}}=R_{B B}-R_{B_{1}}=5 k \Omega-3 k \Omega=2 k \Omega

b. At the point wherev_{C}=V_{P}, if we continue with I_{E}=0 A, the network of Fig. 17.46 results, where

V_{P}=0.7 V +\frac{\left(R_{B_{1}}+R_{2}\right) 12 V }{\underbrace{R_{B_{1}}+R_{B_{2}}}_{R_{B B}}+R_{2}}

 

=0.7 V +\frac{(3 k \Omega+0.1 k \Omega) 12 V }{5 k \Omega+0.1 k \Omega}=0.7 V +7.294 V

≅ 8 V

c. \frac{V-V_{V}}{I_{V}}<R_{1}<\frac{V-V_{P}}{I_{P}}

 

\frac{12V- 1V}{10 \ mA}<R_{1}<\frac{12V-8V}{10 \ \mu A}

 

1.1 k \Omega<R_{1}<400 k \Omega

The resistance R_{1}=50 k \Omega falls within this range.

d. t_{1}=R_{1} C \log _{e} \frac{V-V_{V}}{V-V_{P}}

 

=(50 k \Omega)(0.1 pF ) \log _{e} \frac{12 V -1 V }{12 V -8 V }

 

=5 \times 10^{-3} \log _{e} \frac{11}{4}=5 \times 10^{-3}(1.01)

= 5.05 ms

t_{2}=\left(R_{B_{1}}+R_{2}\right) C \log _{e} \frac{V_{P}}{V_{V}}

 

=(0.1 k \Omega+0.1 k \Omega)(0.1 pF ) \log _{e} \frac{8}{1}

 

=\left(0.02 \times 10^{-6}\right)(2.08)

= 41.6 µs

and                 T=t_{1}+t_{2}=5.05 ms +0.0416 ms

= 5.092 ms

with           f_{ osc }=\frac{1}{T}=\frac{1}{5.092 ms } \cong 196 H z

Using Eq. (17.17) gives

f \cong \frac{1}{R_{1} C \log _{e}[1 /(1-\eta)]}

 

=\frac{1}{5 \times 10^{-3} \log _{e} 2.5}

= 218 Hz

e. See Fig. 17.47 .

f. During the charging phase, from (Eq. 17.9), we have

V_{R_{2}}=\frac{R_{2} V}{R_{2}+R_{B B}}=\frac{0.1 k \Omega(12 V )}{0.1 k \Omega+5 k \Omega}= 0 . 2 3 5 V

When v_{C}=V_{P}, from (Eq. 17.12), we have

V_{R_{2}} \cong \frac{R_{2}\left(V_{P}-0.7 V \right)}{R_{2}+R_{B_{1}}}=\frac{0.1 k \Omega(8 V -0.7 V )}{0.1 k \Omega+0.1 k \Omega}

= 3.65 V

The plot of v_{R_{2}}appears in Fig. 17.48 .

17.46
17.47
17.48

Related Answered Questions