Question 17.6: GRADED Consider a voltaic cell in which the following reacti...

GRADED

Consider a voltaic cell in which the following reaction occurs:

O_{2}(g, 0.98 atm) + 4H^{+}(aq, pH = 1.24) + 4Br^{-}(aq, 0.15 M) → 2H_{2}O  +   2Br_{2}(l)

ⓐ Calculate E for the cell at 25°C.

ⓑ When the voltaic cell is at 35°C, E is measured to be 0.039 V. What is E° at 35°C?

ANALYSIS
reaction: (O_{2}(g)  +  4H^{+}(aq)  +  4Br^{-}(aq)  →  2Br_{2}(l)  +  2H_{2}O)

P_{O_{2}} (0.98 atm); [H^{+}] (pH = 1.24); [Br^{-}] (0.15 M)

temperature (25°C)

Information given:
Table 17.1 (standard reduction potentials) Information implied:
E Asked for:

Table 17.1 Standard Potentials in Water Solution at 25°C

Lithium is the strongest reducing agent.

 

 

 

 

 

 

 

O = strongest oxidizing agent;
R = strongest reducing agent.

 

 

 

 

 

Fluorine is the strongest oxidizing agent.

 

Lithium and fluorine are very dangerous materials to work with.

 

AcidicSolution,[H^{+}] = 1 M
E°_{red}(V)
-3.040
-2.936
-2.906
-2.869
-2.714
-2.357
-1.680
-1.182
-0.762
-0.744
-0.409
-0.408
-0.402
-0.356
-0.336
-0.282
-0.236
-0.152
-0.141
-0.127
0.000
0.073
0.144
0.154
0.155
0.161
0.339
0.518
0.534
0.769
0.796
0.799
0.908
0.964
1.001
1.077
1.229
1.229
1.330
1.360
1.458
1.498
1.512
1.687
1.763
1.953
2.889
→Li(s)
→ K(s)
→ Ba(s)
→ Ca(s)
→Na(s)
→ Mg(s)
→ Al(s)
→ Mn(s)
→ Zn(s)
→ Cr(s)
→ Fe(s)
Cr^{2+}(aq)
→ Cd(s)
→ Pb(s) + SO_{4}^{2-}(aq)
→ Tl(s)
→ Co(s)
→Ni(s)
→ Ag(s) + I^{-}(aq)
→ Sn(s)
→ Pb(s)
H_{2}(g)
→ Ag(s) + Br^{-}(aq)
H_{2}S(aq)
Sn^{2+}(aq)
SO_{2}(g)  +  2H_{2}O
Cu^{+}(aq)
→ Cu(s)
→ Cu(s)
2I^{-}(aq)
Fe^{2+}(aq)
→ 2Hg(l)
→ Ag(s)
Hg_{2}^{2+}(aq)
→NO(g) + 2H_{2}O
Au(s)  +  4Cl^{-}(aq)
2Br^{-}(aq)
2H_{2}O
Mn^{2+}(aq)  +  2H_{2}O
2Cr^{3+}(aq)  +  7H_{2}O
2Cl^{-}(aq)
\frac{1}{2} Cl_{2}(g)  +  3H_{2}O
→ Au(s)
Mn^{2+}(aq)  +  4H_{2}O
PbSO_{4}(s)  +  2H_{2}O
2H_{2}O
Co^{2+}(aq)
→ 2F^{-}(aq)
Li^{+}(aq)  +  e^{-}
K^{+}(aq)  +  e^{-}
Ba^{2+}(aq)  +  2e^{-}
Ca^{2+}(aq)  +  2e^{-}
Na^{+}(aq) +  e^{-}
Mg^{2+}(aq)  +  2e^{-}
Al^{3+}(aq)  +  3e^{-}
Mn^{2+}(aq)  +  2e^{-}
Zn^{2+}(aq)  +  2e^{-}
Cr^{3+}(aq)  +  3e^{-}
Fe^{2+}(aq)  +  2e^{-}
Cr^{3+}(aq)  +  e^{-}
Cd^{2+}(aq)  +  2e^{-}
PbSO_{4}(s)  +  2e^{-}
Tl^{+}(aq)  +  e^{-}
Co^{2+}(aq)  +  2e^{-}
Ni^{2+}(aq)  +  2e^{-}
AgI(s)  +  e^{-}
Sn^{2+}(aq)  +  2e^{-}
Pb^{2+}(aq)  +  2e^{-}
2H^{+}(aq)  +  2e^{-}
AgBr(s)  +  e^{-}
S(s)  +  2H^{+}(aq)  +  2e^{-}
Sn^{4+}(aq)  +  2e^{-}
SO_{4}^{2-}(aq)  +  4H^{+}(aq) +  2e^{-}
Cu^{2+}(aq)  +  e^{-}
Cu^{2+}(aq)  +  2e^{-}
Cu^{+}(aq)  +  e^{-}
I_{2}(s)  +  2e^{-}
Fe^{3+}(aq)  +  e^{-}
Hg_{2}^{2+}(aq)  +  2e^{-}
Ag^{+}(aq)  +  e^{-}
2Hg^{2+}(aq)  +  2e^{-}
NO_{3}^{-}(aq)  +  4H^{+}(aq) +  3e^{-}
AuCl_{4}^{-}(aq)  +  3e^{-}
Br_{2}(l)  +  2e^{-}
O_{2}(g)  +  4H^{+}(aq)  +  4e^{-}
MnO_{2}(s)  +  4H^{+}(aq)  +  2e^{-}
Cr_{2}O_{7}^{2-}(aq)  +  14H^{+}(aq)  +  6e^{-}
Cl_{2}(g)  +  2e^{-}
ClO_{3}^{-}(aq)  +  6H^{+}(aq)  +  5e^{-}
Au^{3+}(aq)  +  3e^{-}
MnO_{4}^{-}(aq)  +  8H^{+}(aq) +  5e^{-}
PbO_{2}(s)  +  SO_{4}^{2-}(aq)  +  4H^{+}(aq)  +  2e^{-}
H_{2}O_{2}(aq)  +  2H^{+}(aq)  +  2e^{-}
Co^{3+}(aq)  +  e^{-}
F_{2}(g)  +  2e^{-}
Basic Solution, [OH^{-}]= 1 M
E°_{red}(V)
-0.891
-0.828
-0.547
-0.445
-0.140
0.004
0.398
0.401
0.614
0.890
→ Fe(s) + 2 OH^{-}(aq)
H_{2}(g) + 2 OH^{-}(aq)
Fe(OH)_{2}(s) + OH^{-}(aq)
S^{2-}(aq)
→NO(g) + 4 OH^{-}(aq)
NO_{2}^{-}(aq) + 2 OH^{-}(aq)
ClO_{3}^{-}(aq) + 2 OH^{-}(aq)
→ 4 OH^{-}(aq)
Cl^{-}(aq) + 6 OH^{-}(aq)
Cl^{-}(aq) + 2 OH^{-}(aq)
Fe(OH)_{2}(s)  +  2e^{-}
2H_{2}O  +  2e^{-}
Fe(OH)_{3}(s)  +  e^{-}
S(s)  +  2e^{-}
NO_{3}^{-}(aq)  +  2H_{2}O  +  3e^{-}
NO_{3}^{-}(aq)  +  H_{2}O +  2e^{-}
ClO_{4}^{-}(aq)  +  H_{2}O  +  2e^{-}
O_{2}(g)  +  2H_{2}O  +  4e^{-}
ClO_{3}^{-}(aq)  +  3H_{2}O  +  6e^{-}
ClO^{-}(aq)  +  H_{2}O  +  2e^{-}

STRATEGY

1. Change pH to [H^{+}] and find Q.
2. Assign oxidation numbers, write oxidation and reduction half-reactions, and cancel electrons to find n.
3. Find E°. (E°_{red}  +  E°_{ox})
4. Substitute into the Nernst equation (Equation 17.4) for T = 25°C

E = E° – \frac{(0.0257  V)}{n}ln Q        at 25°C            (17.4)
E = E° – \frac{0.0257}{n}ln Q

ANALYSIS
E (0.039 V) at T (35°C)
From part (a): Q (1.8 × 10^{8}); n (4 moles)
Information given:
R and F values in joules Information implied:
E° at 35°C Asked for:

STRATEGY

Substitute into the Nernst equation for any T.

E = E° – \frac{RT}{nF}ln Q

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

1.24 = -log_{10}[H^{+}];  [H^{+}] = 0.058 M

Q = \frac{1}{(P_{O_{2}})  [H^{+}]^{4}  [Br^{-}]^{4}}  =  \frac{1}{(0.98)(0.058)^{4}(0.15)^{4}}  =  1.8  ×  10^{8}

1. [H^{+}]

Q

O: 0 → -2 (reduction); Br: -1 → 0 (oxidation)

O_{2}(g)  +  4H^{+}(aq)  +  4e^{-}(aq)  →  2H_{2}O 2Br^{-}(aq)  →  Br_{2}(l)  +  2e^{-}

The oxidation half-reaction must be multiplied by 2 to cancel out the four electrons in the reduction half-reaction.

n = 4

2. Oxidation numbers

Half-reactions

 

n

E°_{red} for O_{2} = 1.299 V; E°_{red} for Br^{-} = -1.077 V
E° = 1.229 V + (-1.077 V) = 0.152 V
3. 
E = 0.152 V – \frac{0.0257}{4} ln (1.8  ×  10^{8}) = 0.030 V 4. E

0.039 V = E° – \frac{(8.31  J/mol  ·  K)(308K)}{4  (9.648 × 10^{4}  J/mol  ·  V)} ln  (1.8  ×  10^{8})

E° = 0.039 V + 0.126 V = 0.165 V

Related Answered Questions

Question: 17.5

Verified Answer:

ⓐ N: +5 → +2 reduction Ag: 0 → +1 oxidation 1....