Question 6.4.8: Graphing y = a cos b[(x - c)] Graph y=-cos [2(x + π/2)] over...

Graphing y = a cos b[(x – c)]

Graph y=-\cos \left[2\left(x+\frac{\pi}{2}\right)\right] over a one-period interval.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use the steps in Example 7 for the procedure for graphing y=a \cos [b(x-c)] .

Step 1     Here y=-\cos \left[2\left(x+\frac{\pi}{2}\right)\right]=(\underset{\overset{\uparrow }{a = -1} }{-1} ) \cos \underset{\overset{\uparrow }{b = 2} }{2} \left[x-\underset{\overset{\uparrow }{c = -\frac{\pi}{2}} }{\left(-\frac{\pi}{2}\right)} \right]

amplitude =|a|=|-1|=1           period =\frac{2 \pi}{b}=\frac{2 \pi}{2}=\pi

phase shift =c=-\frac{\pi}{2}             Shift left because  c<0.

Step 2  The cycle begins at x=-\frac{\pi}{2}.

One cycle is graphed over the interval \left[-\frac{\pi}{2},-\frac{\pi}{2}+\pi\right]=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right].

Step 3  \frac{1}{4}(\text { period })=\frac{1}{4}(\pi)=\frac{\pi}{4}

The x-coordinates of the five key points are

starting point =-\frac{\pi}{2},-\frac{\pi}{2}+\frac{\pi}{4}=-\frac{\pi}{4},-\frac{\pi}{2}+\frac{\pi}{2}=0,-\frac{\pi}{2}+\frac{3 \pi}{4}=\frac{\pi}{4} ,

and  -\frac{\pi}{2}+\frac{2 \pi}{2}=\frac{\pi}{2}.

Step 4        Because  a=-1<0, we graph y=|-1| \cos \left[2\left(x+\frac{\pi}{2}\right)\right] by sketching one cycle, beginning at \left(-\frac{\pi}{2}, 1\right) and going through the points \left(-\frac{\pi}{4}, 0\right), (0,-1),\left(\frac{\pi}{4}, 0\right), \text { and }\left(\frac{\pi}{2}, 1\right). We then reflect this graph in the x-axis to obtain the graph of y=-\cos \left[2\left(x+\frac{\pi}{2}\right)\right].

1
Screenshot 2022-03-24 121740-min

Related Answered Questions

Question: 6.4.6

Verified Answer:

Recall that for any function f, the graph of y = f...
Question: 6.4.3

Verified Answer:

Begin with the graph of y=2 cos x. Multiply the y-...
Question: 6.6.8

Verified Answer:

a. Let θ represent the radian measure of the angle...