Question 6.4.8: Graphing y = a cos b[(x - c)] Graph y=-cos [2(x + π/2)] over...
Graphing y = a cos b[(x – c)]
Graph y=-\cos \left[2\left(x+\frac{\pi}{2}\right)\right] over a one-period interval.
Learn more on how we answer questions.
Use the steps in Example 7 for the procedure for graphing y=a \cos [b(x-c)] .
Step 1 Here y=-\cos \left[2\left(x+\frac{\pi}{2}\right)\right]=(\underset{\overset{\uparrow }{a = -1} }{-1} ) \cos \underset{\overset{\uparrow }{b = 2} }{2} \left[x-\underset{\overset{\uparrow }{c = -\frac{\pi}{2}} }{\left(-\frac{\pi}{2}\right)} \right]
amplitude =|a|=|-1|=1 period =\frac{2 \pi}{b}=\frac{2 \pi}{2}=\pi
phase shift =c=-\frac{\pi}{2} Shift left because c<0.
Step 2 The cycle begins at x=-\frac{\pi}{2}.
One cycle is graphed over the interval \left[-\frac{\pi}{2},-\frac{\pi}{2}+\pi\right]=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right].
Step 3 \frac{1}{4}(\text { period })=\frac{1}{4}(\pi)=\frac{\pi}{4}
The x-coordinates of the five key points are
starting point =-\frac{\pi}{2},-\frac{\pi}{2}+\frac{\pi}{4}=-\frac{\pi}{4},-\frac{\pi}{2}+\frac{\pi}{2}=0,-\frac{\pi}{2}+\frac{3 \pi}{4}=\frac{\pi}{4} ,
and -\frac{\pi}{2}+\frac{2 \pi}{2}=\frac{\pi}{2}.
Step 4 Because a=-1<0, we graph y=|-1| \cos \left[2\left(x+\frac{\pi}{2}\right)\right] by sketching one cycle, beginning at \left(-\frac{\pi}{2}, 1\right) and going through the points \left(-\frac{\pi}{4}, 0\right), (0,-1),\left(\frac{\pi}{4}, 0\right), \text { and }\left(\frac{\pi}{2}, 1\right). We then reflect this graph in the x-axis to obtain the graph of y=-\cos \left[2\left(x+\frac{\pi}{2}\right)\right].

