Question 10.14: Gravitational potential energy. Determine the total gravitat...
Gravitational potential energy. Determine the total gravitational potential energy of a body \mathscr{B} in a uniform gravitational field of strength g per unit mass a of \mathscr{B}.
Learn more on how we answer questions.
The constant gravitational force per unit mass is a conservative force distribution given by
\mathbf{f} \equiv \mathbf{g}=-\nabla \psi, (10.129a)
in which \psi is the gravitational potential energy density per unit mass σ. Form the scalar product \mathbf{g} \cdot d \mathbf{x}=-\nabla \psi \cdot d \mathbf{x}=-d \psi, which is equivalent to (10.125), and integrate this equation over the path traversed by the body point at x to obtain the potential energy \psi(\mathbf{x}) per unit mass,
\mathbf{v} \cdot \mathbf{f}=-\nabla \psi \cdot \mathbf{v}=-\frac{\partial \psi}{\partial \mathbf{x}} \cdot \frac{d \mathbf{x}}{d t}=-\frac{d \psi(\mathbf{x})}{d t} (10.125)
\psi(\mathbf{x})=-\mathbf{g} \cdot \Delta \mathbf{x} (10.129b)
where \Delta \mathbf{x} \equiv \mathbf{x}(P, t) – \mathbf{x}\left(P, t_0\right). Then for a uniform gravitational field strength g and with \sigma \equiv m in (10.127) , we obtain
V(\mathscr{B}) \equiv \int_{\mathscr{B}} \psi(\mathbf{x}) d \sigma(P), (10.127)
V(\mathscr{B})=\int_{\mathscr{B}} \psi(\mathbf{x}) d m=-\mathbf{g} \cdot \int_{\mathscr{B}} \Delta \mathbf{x} d m=-\mathbf{g} \cdot m \Delta \mathbf{x}^*, (10.129c)
where, from (5.12), \Delta \mathbf{x}^* is the displacement vector of the center of mass of \mathscr{B}. With \mathbf{g}=-g \mathbf{k}, this delivers V = mgh in which h \equiv \mathbf{k} \cdot \Delta \mathbf{x}^*=\Delta z^* is the vertical displacement of the center of mass, a rule similar to the familiar particle relation (7.60). Thus, the total gravitational potential energy of a rigid body in a uniform gravitational field is equal to the gravitational potential energy of its center of mass particle.
m(\mathscr{B}) \mathbf{x}^*(\mathscr{B}, t)=\int_{\mathscr{B}} \mathbf{x}(P, t) d m(P) (5.12)
V_g=m g h (7.60)