Question 7.3: Hydraulic Capacitance of a Conical Tank Derive the capacitan...
Hydraulic Capacitance of a Conical Tank
Derive the capacitance of the conical tank shown in Figure 7.5a using
a. C=\mathrm{d} m / \mathrm{d} p
b. C=A(h) / g.

Learn more on how we answer questions.
a. From Figure 7.5b, the radius r of the cross-section A at an arbitrary height is
r=h \tan \alpha=h \frac{R}{H}.
Thus, the volume of the liquid is
V(h)=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \frac{\pi R^{2}}{H^{2}} h^{3}
and the stored mass is
m=\rho V(h)=\frac{1}{3} \frac{\rho \pi R^{2}}{H^{2}} h^{3}.
Note that the pressure caused by the height of the liquid is
p=p_{\mathrm{a}}+\rho g h,
which gives
\frac{\mathrm{d} p}{\mathrm{~d} h}=\rho g.
Thus, the capacitance of the conical tank is
C=\frac{\mathrm{d} m}{\mathrm{~d} p}=\frac{\mathrm{d} m}{\mathrm{~d} h} \frac{\mathrm{d} h}{\mathrm{~d} p}=\left(\frac{\rho \pi R^{2}}{H^{2}} h^{2}\right)\left(\frac{1}{\rho g}\right)=\frac{\pi R^{2} h^{2}}{H^{2} g} .
b. The hydraulic capacitance can also be derived directly using C=A(h) / g, which yields
C=\frac{\pi r^{2}}{g}=\left(\frac{\pi}{g}\right)\left(\frac{R^{2} h^{2}}{H^{2}}\right)=\frac{\pi R^{2} h^{2}}{H^{2} g}.