Question 11.6: Ice Water Goal Solve a problem involving heat transfer and a...

Ice Water

Goal Solve a problem involving heat transfer and a phase change from solid to liquid.

Problem At a party, 6.00 \mathrm{~kg} of ice at -5.00^{\circ} \mathrm{C} is added to a cooler holding 30 liters of water at 20.0^{\circ} \mathrm{C}. What is the temperature of the water when it comes to equilibrium?

Strategy In this problem, it’s best to make a table. With the addition of thermal energy Q_{\text {ice }}, the ice will warm to 0^{\circ} \mathrm{C}; then melt at 0^{\circ} \mathrm{C} with the addition of energy Q_{\text {melt }}. Next, the melted ice will warm to some final temperature T by absorbing energy Q_{\text {ice-water }}, obtained from the energy change of the original liquid water, Q_{\text {water }}. By conservation of energy, these quantities must sum to zero.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Calculate the mass of liquid water:

\begin{aligned} m_{\text {water }} & =\rho_{\text {water }} V \\ & =\left(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(30.0 \mathrm{~L}) \frac{1.00 \mathrm{~m}^{3}}{1.00 \times 10^{3} \mathrm{~L}} \\ & =30.0 \mathrm{~kg} \end{aligned}

Write the equation of thermal equilibrium:

Q_{\text {ice }}+Q_{\text {melt }}+Q_{\text {ice-water }}+Q_{\text {water }}=0          (1)

Construct a comprehensive table:

\begin{array}{lcccccc} \hline \boldsymbol{Q} & \boldsymbol{m}(\mathbf{k g}) & \boldsymbol{c}\left(\mathbf{J} / \mathbf{k g} \cdot{ }^{\circ} \mathbf{C}\right) & \boldsymbol{L}(\mathbf{J} / \mathbf{k g}) & \boldsymbol{T}_{\boldsymbol{f}}\left({ }^{\circ} \mathbf{C}\right) & \boldsymbol{T}_{\boldsymbol{i}}\left({ }^{\circ} \mathbf{C}\right) & \text{Expression }\\ \hline Q_{\text {ice }} & 6.00 & 2090 & & 0 & -5.00 & m_{\text {ice }} c_{\text {ice }}\left(T_{f}-T_{i}\right) \\ Q_{\text {melt }} & 6.00 & & 3.33 \times 10^{5} & 0 & 0 & m_{\text {ice }} L_{f} \\ Q_{\text {ice-water }} & 6.00 & 4190 & & T & 0 & m_{\text {ice }} c_{\text {wat }}\left(T_{f}-T_{i}\right) \\ Q_{\text {water }} & 30.0 & 4190 & & T & 20.0 & m_{\text {wat }} c_{\text {wat }}\left(T_{f}-T_{i}\right) \\ \hline \end{array}

Substitute all quantities in the second through sixth columns into the last column and sum (which is the evaluation of Equation 1), and solve for T :

\begin{aligned} 6.27 \times 10^{4} \mathrm{~J}+ & 2.00 \times 10^{6} \mathrm{~J} \\ + & \left(2.51 \times 10^{4} \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(T-0^{\circ} \mathrm{C}\right) \\ + & \left(1.26 \times 10^{5} \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(T-20.0^{\circ} \mathrm{C}\right)=0 \end{aligned}

T=3.03^{\circ} \mathrm{C}

Remarks Making a table is optional. However, simple substitution errors are extremely common, and the table makes such errors less likely.

Related Answered Questions