Question 7.136: If the 45-m-long cable has a mass per unit length of 5 kg/m,...

If the 45-m-long cable has a mass per unit length of 5 kg/m, determine the equation of the catenary curve of the cable and the maximum tension developed in the cable.

1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

As shown in Fig. a, the orgin of the x, y coordinate system is set at the lowest point of the cable. Here, w(s)=5(9.81)  \mathrm{N} / \mathrm{m}=49.05 \mathrm{~N} / \mathrm{m}

\frac{d^2 y}{d x^2}=\frac{49.05}{F_H} \sqrt{1+\left(\frac{d y}{d x}\right)^2}

\text { Set } u=\frac{d y}{d x} \text {, then } \frac{d u}{d x}=\frac{d^2 y}{d x^2} \text {, then }

\frac{d u}{\sqrt{1+u^2}}=\frac{49.05}{F_H} d x

Integrating,

\ln \left(u+\sqrt{1+u^2}\right)=\frac{49.05}{F_H} x+C_1

Applying the boundary condition u=\frac{d y}{d x}=0 \text { at } x=0 \text { results in } C_1=0 . Thus,

\ln \left(u+\sqrt{1+u^2}\right)=\frac{49.05}{F_H} x

u+\sqrt{1+u^2}=e^{\frac{49.05}{F_H} x}

\frac{d y}{d x}=u=\frac{e^{\frac{49.05}{F_H} x}-e^{-\frac{49.05}{F_H} x}}{2}

Since sinh x=\frac{e^x-e^{-x}}{2}, then

\frac{d y}{d x}=\sinh \frac{49.05}{F_H} x

Integrating,

y=\frac{F_H}{49.05} \cosh \left(\frac{49.05}{F_H} x\right)+C_2

Applying the boundary equation y = 0 at x = 0 results in C_2=-\frac{F_H}{49.05} . Thus,

y=\frac{F_H}{49.05}\left[\cosh \left(\frac{49.05}{F_H} x\right)-1\right]  \mathrm{m}

If we write the force equation of equilibrium along the x and y axes by referring to the free-body diagram shown in Fig. b,

\overset{+}{\longrightarrow } \Sigma F_x=0 ; \quad T \cos \theta-F_H=0

 

+↑\Sigma F_y=0 ; \quad T \sin \theta-5(9.81) s=0

Eliminating T,

\frac{d y}{d x}=\tan \theta=\frac{49.05 s}{F_H}

Equating Eqs. (1) and (3) yields

\frac{49.05 s}{F_H}=\sinh \left(\frac{49.05}{F_H} x\right)

s=\frac{F_H}{49.05}=\sinh \left(\frac{49.05}{F_H}\right)

Thus, the length of the cable is

L=45=2\left\{\frac{F_H}{49.05} \sinh \left(\frac{49.05}{F_H}(20)\right)\right\}

Solving by trial and error,

F_H=1153.41 \mathrm{~N}

Substituting this result into Eq. (2),

y=23.5[\cosh 0.0425 x-1]  \mathrm{m}

The maximum tension occurs at either points A or B where the cable makes the greatest angle with the horizontal. Here

\theta_{\max }=\tan ^{-1}\left(\left.\frac{d y}{d x}\right|_{\mathrm{x}=20 \mathrm{~m}}\right)=\tan ^{-1}\left\{\sinh \left(\frac{49.05}{F_H}(20)\right)\right\}=43.74^{\circ}

Thus,

T_{\max }=\frac{F_H}{\cos \theta_{\max }}=\frac{1153.41}{\cos 43.74^{\circ}}=1596.36 \mathrm{~N}=1.60  \mathrm{kN}

Related Answered Questions

Question: 7.135

Verified Answer:

Question: 7.134

Verified Answer:

Free body Diagram: The support reactions need not ...
Question: 7.133

Verified Answer:

Question: 7.130

Verified Answer:

Support Reactions: The 6 kN load can be replacde b...