Question 26.3.47: If the diameter of a long column is reduced by 20%, the perc...

If the diameter of a long column is reduced by 20%, the percentage of reduction in Euler’s buckling load is
(a) 4                 (b) 36                 (c) 49                 (d) 59.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(d)

EXPLANATION

Euler’s buckling load,

P=\frac{\pi^2 E I}{L^2} \text { where } I=\frac{\pi}{64} d^4

For circular column when diameter is reduced by 20%, then dia. of new column = 0.8 d

∴ New moment of inertia,  I^*=\frac{\pi}{4} \times(0.8  d)^4=\frac{\pi}{4} \times d^4 \times(0.8)^4

Initial buckling load,      P=\frac{\pi^2 E}{L^2} \times \frac{\pi}{64} d^4

New buckling load,          P^*=\frac{\pi^2 E}{L^2} \times \frac{\pi}{64} \times d^4 \times 0.8^4

∴      \% \quad \text { reduction in load }=\frac{P-P^*}{P} \times 100 \\ \space \\  =\frac{\left(\frac{\pi^2 E}{L^2} \times \frac{\pi}{64} d^4-\frac{\pi^2 E}{L^2} \times \frac{\pi}{64} d^4 \times 0.8^4\right)}{\frac{\pi^2 E}{L^2} \times \frac{\pi}{4} d^4} \times 100 \\ \space \\ =\frac{1-0.8^4}{1}=(1-0.4096) \times 100= \pmb{5 9 \% .}

Related Answered Questions

Question: 26.3.50

Verified Answer:

(b) EXPLANATION E = 2C (1 + μ) ∴                  ...