Question 6.39: (Impulse reaction turbine). The following data relate to a s...

(Impulse reaction turbine). The following data relate to a stage of an impulse reaction turbine :
Steam velocity coming out of nozzle = 245 m/s ; nozzle angle = 20° ; blade mean speed = 145 m/s ; speed of the rotor = 300 r.p.m. ; blade height = 10 cm ; specific volume of steam at nozzle outlet and blade outlet respectively = 3.45 m³/kg and 3.95 m³/kg ; Power developed by the turbine = 287 kW ; efficiency of nozzle and blades combinedly = 90% ; carry over co-efficient = 0.82.
Find :          (i) The heat drop in each stage ;         (ii) Degree of reaction ;
(iii) Stage efficiency.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Steam velocity coming out of nozzle, C_{1} = 245 m/s
Nozzle angle,                                 α = 20°
Blade mean speed,                      C_{bl} = 145 m/s
Speed of the rotor,                       N = 3000 r.p.m.
Blade height,                                 h = 10 cm = 0.1 m
Specific volume of steam at nozzle outlet or blade inlet, v_{1} = 3.45 m³/kg
Specific volume of steam at blade outlet, v_{0} = 3.95 m³/kg
Power developed by the turbine = 287 kW
Efficiency of nozzle and blades combinedly = 90%
Carry over co-efficient, ψ = 0.82
Blade speed,                        C_{bl} =  \frac{πDN}{60}

∴                                                D =   \frac{ 60        C_{bl}  }{πN}  =  \frac{60    ×     145}{π    ×     3000}  = 0.923 m

Mass flow rate,                              \dot{m}_{s}  =  \frac{  C_{f_1}     ×    πDh    }{v_{1}}   =  \frac{C_{1}     sin  α    ×    πDh    }{v_{1}}

\frac{245   ×    sin    20°   ×    π        ×        0.923   ×    0.1}{3.45}   =  7.04  kg/s

Also                               \dot{m}_{s}  =  \frac{  C_{f_0}      πDh    }{v_{0}}

∴                                                    C_{f_0} =  \frac{\dot{m}_{s}    v_{0}}{πDh}    =  \frac{7.04       ×      3.95}{π       ×      0.923       ×      0.1} =  95.9 m/s

The power is given by,                      P = \frac{\dot{m}_{s}   ×    C_{bl}    ×    C_{w}}{1000}

287 =  \frac{7.04     ×   145    ×    C_{w} }{1000}

∴                                                              C_{w}  = \frac{287   ×    1000}{7.04     ×   145    }   = 281  m/s

Now draw velocity triangles as follows :
Select a suitable scale (say 1 cm = 25 m/s)
•  Draw LM = blade velocity = 145 m/s ; ∠MLS = nozzle angle = 20° Join MS to complete the inlet ∆LMS.
•  Draw a perpendicular from S which cuts the line through LM at point P. Mark the point Q such that PQ =   C_{w}   = 281 m/s.
•  Draw a perpendicular through point Q and the point N as QN = 95.9 m/s. Join LN and MN to complete the outlet velocity triangle.

From the velocity triangles ;

C_{r_1}  = 117.5    m/s ;  C_{r_0} =   217.5   m/s ;  C_{0}  =   105   m/s. 

(i) Heat drop in each stage, (∆h)_{stage} :
Heat drop in fixed blades ( ∆h_{f} )

\frac{ C_{1}²   –      ψ    C_{0}²}{2  ×    η_{nozzle}}   , where ψ is a carry over co-efficient

\frac{(245)²     –   0.82    ×     (105)²}{2   ×     0.9    ×    1000}   =   28.32  kJ/kg

Heat drop in moving blades ( ∆h_{m} )

\frac{ C_{r_0}²   –        C_{r_1}²}{2  ×    η_{nozzle}}   =  \frac{(217.5)²     –    (117.5)²}{2   ×     0.9    ×    1000} =    18.61   kJ/kg

Total heat drop in a stage,

( ∆h)_{stage}  =     ∆h_{f}   +   ∆h_{m}   = 28.32 + 18.61 = 46.93 kJ/kg.

(ii) Degree of reaction, R_{d} :

R_{d}  =  \frac{ ∆h_{m} }{ ∆h_{m}   +    ∆h_{f} }  =  \frac{18.61 }{18.61  +   28.32}    = 0.396. 

(iii) Stage efficiency,  η_{stage} :

Work done per kg of steam

= \frac{C_{bl}    ×   C_{w}}{1000}  =  \frac{145    ×     281}{1000}    = 40.74 kJ/kg of steam

∴                                                    η_{stage}   =  \frac{Work  done   per    kg    of    steam}{Total  heat   drop    in  a   stage}    = \frac{40.74}{46.93} 0.868   or   86.8%.

639

Related Answered Questions