Question 4.4: In a very long p- type Si bar with cross- sectional area = 0...

In a very long p- type Si bar with cross-sectional area=0.5 cm^{2} andN_{a} =10^{17} cm^{-3}, we inject holes such that the steady state excess hole concentration is   5\times 10^{16} cm^{-3}  at x = 0. What is the steady state separation between  F_{p}   and E_{c} at x=1000\mathring{A}? What is the hole current there? How much is the excess stored hole charge? Assume that   \mu_{p} =500{cm^{2}}/{V_{-s} } and \pmb{\tau}_{p} =10^{-10} s

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
D_{p} =\frac{KT}{q} \mu_{p} =0.0259\times 500=12.95{cm}/{s}

 

L_{p}=\sqrt{D_{p}\tau_{p} } =\sqrt{12.95\times 10^{-10} } =3.6\times 10^{-5} cm

 

p=p_{0}+\Delta pe^{-\frac{x}{L_{p} } } =10^{17}+5\times 10^{16}e^{-\frac{10^{-5} }{3.6\times 10^{-5} } }

 

=1.379 \times 10^{17} =n_{i}e^{(E_{i}-F_{b} )/KT} =(1.5\times 10^{10}cm^{-3} )e^{{(E_{i}-F_{b} )/KT}}

 

E_{i}-F_{b}=(\ln \frac{1.379\times 10^{17} }{1.5\times 10^{10} } )\cdot 0.0259=0.415eV

 

E_{c}-F_{b}=1.1/2eV+0.415eV=0.965 eV

 

We can calculate the hole current from Eq. (4–40)

 

J_{p}(x)=-qD_{p} \frac{dp}{dx} =-qD_{p}\frac{d\delta p}{dx}= q\frac{D_{p}}{L_{p}}\Delta pe^{-x/L_{p}} =q\frac{D_{p}}{L_{p}}\delta p(x)   (4–40)

 

I_{p} =-qAD_{p} \frac{dp}{dx} =qA\frac{D_{p}}{L_{p}} (\Delta p)x^{-\frac{x}{L_{p} } }

 

1.6\times 10^{-19} \times 0.5\times \frac{12.95}{3.6\times 10^{-5}} \times 5\times 10^{16}e^{-\frac{10^{-5} }{3.6\times 10^{-5} } }

 

=1.09\times 10^{3}A  

 

Q{p} =qA(\Delta p)L_{p}

 

=1.6\times 10^{-19} (0.5)(5\times 10^{16} )(3.6\times 10^{-5})

 

=1.44\times 10^{-7}C

Related Answered Questions