Question 8.10: In Example 8.8, calculate the delta-v required to place the ...

In Example 8.8, calculate the delta-v required to place the spacecraft in an elliptical capture orbit around Mars with a periapsis altitude of 300 km and a period of 48 h. Sketch the approach hyperbola.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Tables A.1 and A.2, we know that

r_{\text {Mars }}=3380  km

\mu_{ Mars }=42,830  km ^3 / s ^2

Table A.1 Astronomical data for the sun, the planets, and the moon

Object Radius
(km)
Mass (kg) Sidereal
rotation
period
Inclination of
equator to
orbit plane
Semimajor
axis of orbit
(km)
Orbit
eccentricity
Inclination of
orbit to the
ecliptic plane
Orbit
sidereal
period
Sun 696000 1.989 \times 10^{30} 25.38d 7.25°
Mercury 2440 330.2 \times 10^{21} 58.56d 0.01° 57.91 \times 10^{6} 0.2056 7.00° 87.97d
Venus 6052 4.869 \times 10^{24} 243d^{a} 177.4° 108.2 \times 10^{6} 0.0067 3.39° 224.7d
Earth 6378 5.974 \times 10^{24} 23.9345h 23.45° 149.6 times 10^{6} 0.0167 0.00° 365.256d
(Moon) 1737 73.48 \times 10^{21} 27.32d 6.68° 384.4 \times 10^{3} 0.0549 5.145° 27.322d
Mars 3396 641.9 \times 10^{21} 24.62h 25.19° 227.9 \times 10^{6} 0.0935 1.850° 1.881y
Jupiter 71,490 1.899 \times 10^{27} 9.925h 3.13° 778.6 \times 10^{6} 0.0489 1.304° 11.86y
Saturn 60,270 568.5 \times 10^{24} 10.66h 26.73° 1.433 \times 10^{9} 0.0565 2.485° 29.46y
Uranus 25,560 86.83 \times 10^{24} 17.24h^{a} 97.77° 2.872 \times 10^{9} 0.0457 0.772° 84.01y
Neptune 24,764 102.4 \times 10^{24} 16.11h 28.32° 4.495 \times 10^{9} 0.0113 1.769° 164.8y
(Pluto) 1187 13.03 \times 10^{21} 6.387d^{a} 122.5° 5.906 \times 10^{9} 0.2488 17.16° 247.9y
^aRetrograde.

Table A.2 Gravitational parameter (μ) and sphere of influence (SOI) radius for the sun, the planets, and the moon

Celestial body μ (km³/s²) SOI radius (km)
Sun 132,712,440,018
Mercury 22,032 112,000
Venus 324,859 616,000
Earth 398,600 925,000
Earth’s moon 4905 66,100
Mars 42,828 577,000
Jupiter 126,686,534 48,200,000
Saturn 37,931,187 54,800,000
Uranus 5,793,939 51,800,000
Neptune 6,836,529 86,600,000
Pluto 871 3,080,000

The radius to periapsis of the arrival hyperbola is the radius of Mars plus the periapsis of the elliptical capture orbit,

r_p = 3380 + 300 = 3680 km

According to Eq. (8.40) and Eq. (b) of Example 8.8, the speed of the spacecraft at periapsis of the arrival hyperbola is

\left.v_p\right)_{\text {Arrival }}=\sqrt{\left.\left[v_{\infty}\right)_{\text {Arrival }}\right]^2+\frac{2 \mu_{\text {Mars }}}{r_p}}=\sqrt{2.8852^2+\frac{2 \cdot 42,830}{3680}}=5.621  km / s

To find the speed \left.v_p\right)_{\text { ellipse }} at periapsis of the capture ellipse, we use the required period (48 h) to determine the ellipse’s semimajor axis, using Eq. (2.83),

a_{\text {ellipse }}=\left(\frac{T \sqrt{\mu_{\text {Mars }}}}{2 \pi}\right)^{3 / 2}=\left(\frac{48 \cdot 3600 \cdot \sqrt{42,830}}{2 \pi}\right)^{3 / 2}=31,880  km

From Eq. (2.73), we obtain

e_{\text {ellipse }}=1-\frac{r_p}{a_{\text {ellipse }}}=1-\frac{3680}{31,880}=0.8846

Then Eq. (8.59) yields

\left.v_p\right)_{\text {ellipse }}=\sqrt{\frac{\mu_{\text {Mars }}}{r_p}\left(1+e_{\text {ellipse }}\right)}=\sqrt{\frac{42,830}{3680}(1+0.8846)}=4.683  km / s

Hence, the delta-v requirement is

\left.\left.\Delta v=v_p\right)_{\text {Arrival }}-v_p\right)_{\text {ellipse }}=0.9382  km / s

The eccentricity of the approach hyperbola is given by Eq. (8.38),

e=1+\frac{\left.r_p\left(v_{\infty}\right)_{\text {Arival }}\right)^2}{\mu_{\text {Mars }}}=1+\frac{3680 \cdot 2.8852^2}{42,830}=1.715

Assuming that the capture ellipse is a polar orbit of Mars, then the approach hyperbola is as illustrated in Fig. 8.30. Note that Mars’ equatorial plane is inclined 25° to the plane of its orbit around the sun. Furthermore, the vernal equinox of Mars lies at an angle of 85° from that of the earth.

90307.8.30

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eq. (5.48), the Julian day nu...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have R_{\text {e...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...