Question 12.43: In Fig. 12.38, i(t)=I1cos(ω1t)+I2cos(ω2t+θ) , where ω1≠ω2....

In Fig.  12.38, \quad i(t)= I_1 \cos \left(\omega_1 t\right)+I_2 \cos \left(\omega_2 t+\theta\right) , where \omega_1 \neq \omega_2. Use superposition to obtain an expression for the voltage  ν .

12-38
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let \tilde{I}_1=I_1 \angle 0, \tilde{I}_2=I_2 \angle \theta and obtain expressions for the responses to these excitations individually, using the appropriate frequency in each case. Kirchhoff’s current law yields

\begin{aligned} &\frac{\tilde{V}}{R}+j \omega C \tilde{V}=\tilde{I} \\\\ &\Rightarrow \tilde{V}=\frac{R}{1+j \omega C R} \tilde{I} \end{aligned}       ( 12.63)

The individual phasors for the individual responses are

\begin{aligned} &\tilde{V}_1=\frac{R}{1+j \omega_1 C R} \tilde{I}_1 \\\\ &\Rightarrow v_1(t)=\left|\tilde{V}_1\right| \cos \left(\omega_1 t+∡ \tilde{V}_1\right) \\\\ &\tilde{V}_2=\frac{R}{1+j \omega_2 C R} \tilde{I}_2 \\\\ &\Rightarrow v_2(t)=\left|\tilde{V}_2\right| \cos \left(\omega_2 t+\theta+∡ \tilde{V}_2\right) \end{aligned}              (12.64)

By superposition,

\begin{aligned} ν(t)=& ν_1(t)+ν_2(t) \\\\ =&\left|\tilde{V}_1\right| \cos \left(\omega_1 t+\not \tilde{V}_1\right) \\\\ &+\left|\tilde{V}_2\right| \cos \left(\omega_2 t+\theta+∡ \tilde{V}_2\right) \end{aligned}         ( 12.65)

Related Answered Questions

Question: 12.46

Verified Answer:

We may ignore the resistor R_1 be...