Question B.25: In Figure B.15, if R1=2.2 kΩ,R3=18 kΩ,v1=120 mV and v2=−40 m...

 In Figure B.15, if R_{1}=2.2  \mathrm{k} \Omega, R_{3}=18  \mathrm{k} \Omega, v_{1}=120  \mathrm{mV} and v_{2}=-40  \mathrm{mV}, choose the value of R_{2} such that v_{3}=0.
a. 1.2 \mathrm{k} \Omega         b. 5 \mathrm{k} \Omega         c. 7.33 \mathrm{k} \Omega         d. 0.733 \mathrm{k} \Omega          e. 0.5 \mathrm{k} \Omega
b.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using the summing amplifier equation in Chapter 12, we calculate:

\begin{aligned}v_{3} &=-\frac{R_{3}}{R_{1}} v_{1}-\frac{R_{3}}{R_{2}} v_{2} \text { or } 0=-\frac{18}{2.2}(120)-\frac{18}{R_{2}}(-40) \\\frac{120}{2.2} &=\frac{40}{R_{2}} \\R_{2} &=\frac{2.2 \times 40}{120}=0.733  \mathrm{k} \Omega\end{aligned}

Thus, the nearest answer is \mathrm{d}.

Related Answered Questions