Question 9.16: In the amplifier circuit shown in Fig. 9.44, show that Vo = ...
In the amplifier circuit shown in Fig. 9.44, show that V_{o} = V_{2} – V_{1} if
R_{1} = R_{2}.

Learn more on how we answer questions.
V_{a}=\frac{R_{2}}{R_{1}+R_{3}}×V_{2}
V_{b}=V_{a}=\frac{R_{2}}{R_{1}+R_{2}}×V_{2} (9.26)
Again, \frac{V_{1}-V_{b}}{R_{1}}=\frac{V_{b}-V_{o}}{R_{2}} (9.27)
From Eqs. (9.26) and (9.27)
\frac{V_{1}}{R_{1}}-\frac{V_{b}}{R_{1}}=\frac{V_{b}}{R_{2}}-\frac{V_{o}}{R_{2}}
when R_{1} = R_{2}
\frac{V_{1}}{R_{1}}-\frac{V_{b}}{R_{1}}=\frac{V_{b}}{R_{1}}-\frac{V_{o}}{R_{1}}
or, V_{o}= V_{1}- 2V_{b}. (9.28)
Again, V_{b}=\frac{R_{2}}{R_{1}+R_{2}}×V_{2}=\frac{R_{2}}{2R_{2}}V_{2}=\frac{V_{2}}{2} (9.29)
From Eqs. (9.28) and (9.29),
V_{o}= V_{1}- 2 × \frac{V_{2}}{2}
or, V_{o}= V_{1}-V_{2}