Question 24.4: In the chemical vapor deposition of silane (SiH4) on a silic...

In the chemical vapor deposition of silane \left(\mathrm{SiH}_{4}\right) on a silicon wafer, a process gas stream rich in an inert nitrogen \left(\mathrm{N}_{2}\right) carrier gas has the following composition:

y_{\mathrm{SIH}_{4}}=0.0075, \quad y_{\mathrm{H}_{2}}=0.015, \quad y_{\mathrm{N}_{2}}=0.9775

The gas mixture is maintained at 900 K and 100 Pa total system pressure. Determine the diffusivity of silane through the gas mixture. The Lennard–Jones constants for silane are \varepsilon_{A} / \kappa=207.6 \mathrm{~K} and \sigma_{A}=4.08  Å

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The binary diffusion coefficients at 900 K and 100 Pa total system pressure estimated by the Hirschfelder equation (24-33) are

D_{A B}=\frac{0.001858 T^{3 / 2}\left[\frac{1}{M_{A}}+\frac{1}{M_{B}}\right]^{1 / 2}}{P \sigma_{A B}^{2} \Omega_{D}}      (24-33)

 

D_{\mathrm{SiH}_{4}-\mathrm{N}_{2}}=1.09 \times 10^{3} \mathrm{~cm}^{2} / \mathrm{s} \quad \text { and } \quad D_{\mathrm{SiH}_{4}-\mathrm{H}_{2}}=4.06 \times 10^{3} \mathrm{~cm}^{2} / \mathrm{s}

The binary diffusion coefficients are relatively high because the temperature is high and the total system pressure is low. The composition of nitrogen and hydrogen on a silane-free basis are

y_{N_{2}}^{\prime}=\frac{0.9775}{1-0.0075}=0.9849 \quad \text { and } \quad y_{H_{2}}^{\prime}=\frac{0.015}{1-0.0075}=0.0151

Upon substituting these values into the Wilke equation (24-49), we obtain

D_{1-\text { mixture }}=\frac{1}{y_{2}^{\prime} / D_{1-2}+y_{3}^{\prime} / D_{1-3}+\cdots+y_{n}^{\prime} / D_{1-n}}                 (24-49)

 

D_{\mathrm{SiH}_{4} \text {-mixture }}=\frac{1}{\frac{y_{\mathrm{N}_{2}}^{\prime}}{D_{\mathrm{SiH}_{4}-\mathrm{N}_{2}}}+\frac{y_{\mathrm{H}_{2}}^{\prime}}{D_{\mathrm{SiH}_{4}-\mathrm{H}_{2}}}}=\frac{1}{\frac{0.9849}{1.09 \times 10^{3}}+\frac{0.0151}{4.06 \times 10^{3}}}=1.10 \times 10^{3} \frac{\mathrm{cm}^{2}}{\mathrm{~s}}

This example verifies that for a dilute multicomponent gas mixture, the diffusion coefficient of the diffusing species in the gas mixture is approximated by the binary diffusion coefficient of the diffusing species in the carrier gas.

Related Answered Questions