Question 9.5.3: Incorporate shifting into the QR method for the matrix A = [...

Incorporate shifting into the QR method for the matrix

A=\left[\begin{array}{lll}3 & 1 & 0 \\1 & 3 & 1 \\0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}a_{1}^{(1)} & b_{2}^{(1)} & 0 \\b_{2}^{(1)} & a_{2}^{(1)} & b_{3}^{(1)} \\0 & b_{3}^{(1)} & a_{3}^{(1)}\end{array}\right].

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To find the acceleration parameter for shifting requires finding the eigenvalues of

\left[\begin{array}{cc}a_{2}^{(1)} & b_{3}^{(1)} \\b_{3}^{(1)} & a_{3}^{(1)}\end{array}\right]=\left[\begin{array}{ll}3 & 1 \\1 & 3\end{array}\right],

which are \mu_{1}=4 \text { and } \mu_{2}=2 . The choice of eigenvalue closest to a_{3}^{(1)}=3  is arbitrary, and we choose \mu_{2}=2 and shift by this amount. Then \sigma_{1}=2 and

\left[\begin{array}{ccc}d_{1} & b_{2}^{(1)} & 0 \\b_{2}^{(1)} & d_{2} & b_{3}^{(1)} \\0 & b_{3}^{(1)} & d_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 0 \\1 & 1 & 1 \\0 & 1 & 1\end{array}\right].

Continuing the computation gives

\begin{gathered}x_{1}=1, \quad y_{1}=1, \quad z_{1}=\sqrt{2}, \quad c_{2}=\frac{\sqrt{2}}{2}, \quad s_{2}=\frac{\sqrt{2}}{2} \\q_{1}=\sqrt{2}, \quad x_{2}=0, \quad r_{1}=\frac{\sqrt{2}}{2}, \quad \text { and } \quad y_{2}=\frac{\sqrt{2}}{2}\end{gathered}

so

A_{2}^{(1)}=\left[\begin{array}{ccc}\sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\0 & 0 & \frac{\sqrt{2}}{2} \\0 & 1 & 1\end{array}\right] .

Further,

z_{2}=1, \quad c_{3}=0, \quad s_{3}=1, \quad q_{2}=1, \quad \text { and } \quad x_{3}=-\frac{\sqrt{2}}{2},

so

R^{(1)}=A_{3}^{(1)}=\left[\begin{array}{ccc}\sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\0 & 1 & 1 \\0 & 0 & -\frac{\sqrt{2}}{2}\end{array}\right]

To compute A^{(2)} , we have

z_{3}=-\frac{\sqrt{2}}{2}, \quad a_{1}^{(2)}=2, \quad b_{2}^{(2)}=\frac{\sqrt{2}}{2}, \quad a_{2}^{(2)}=1, \quad b_{3}^{(2)}=-\frac{\sqrt{2}}{2}, \quad \text { and } \quad a_{3}^{(2)}=0,

so

A^{(2)}=R^{(1)} Q^{(1)}=\left[\begin{array}{ccc}2 & \frac{\sqrt{2}}{2} & 0 \\\frac{\sqrt{2}}{2} & 1 & -\frac{\sqrt{2}}{2} \\0 & -\frac{\sqrt{2}}{2} & 0\end{array}\right].

One iteration of the QR method is complete. Neither b_{2}^{(2)}=\sqrt{2} / 2 \text { nor } b_{3}^{(2)}=-\sqrt{2} / 2  is small, so another iteration of the QR method is performed. For this iteration, we calculate the eigenvalues \frac{1}{2} \pm \frac{1}{2} \sqrt{3}  of the matrix

\left[\begin{array}{cc}a_{2}^{(2)} & b_{3}^{(2)} \\b_{3}^{(2)} & a_{3}^{(2)}\end{array}\right]=\left[\begin{array}{cc}1 & -\frac{\sqrt{2}}{2} \\-\frac{\sqrt{2}}{2} & 0\end{array}\right]

and choose \sigma_{2}=\frac{1}{2}-\frac{1}{2} \sqrt{3} , the closest eigenvalue to a_{3}^{(2)}=0 . Completing the calculations gives

A^{(3)}=\left[\begin{array}{ccc}2.6720277 & 0.37597448 & 0 \\0.37597448 & 1.4736080 & 0.030396964 \\0 & 0.030396964 & -0.047559530\end{array}\right].

If b_{3}^{(3)}=0.030396964 is sufficiently small, then the approximation to the eigenvalue \lambda_{3} is 1.5864151, the sum of a_{3}^{(3)} and the shifts \sigma_{1}+\sigma_{2}=2+(1-\sqrt{3}) / 2 . Deleting the third row and column gives

A^{(3)}=\left[\begin{array}{cc}2.6720277 & 0.37597448 \\0.37597448 & 1.4736080\end{array}\right],

which has eigenvalues \mu_{1}=2.7802140 \text { and } \mu_{2}=1.3654218 . Adding the shifts gives the approximations

\lambda_{1} \approx 4.4141886 \text { and } \lambda_{2} \approx 2.9993964.

The actual eigenvalues of the matrix A are 4.41420, 3.00000, and 1.58579, so the QR method gave four significant digits of accuracy in only two iterations.

Related Answered Questions

Question: 9.6.2

Verified Answer:

We found in Example 1 that A has the singular valu...
Question: 9.6.1

Verified Answer:

We have A^{t}=\left[\begin{array}{lllll}1 &...