Question 16.1: Induction-Motor Performance A certain 30-hp four-pole 440-V-...

Induction-Motor Performance
A certain 30-hp four-pole 440-V-rms 60-Hz three-phase delta-connected induction motor has

\begin{matrix} R_s=1.2 \ \Omega && R^\prime_r=0.6 \ \Omega \\ X_s=2.0 \ \Omega && X_r^\prime=0.8 \ \Omega \\ X_m=50 \ \Omega \end{matrix}

Under load, the machine operates at 1746 rpm and has rotational losses of 900 W.
Find the power factor, the line current, the output power, copper losses, output torque, and efficiency.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table 16.1, we find that synchronous speed for a four-pole motor is n_s = 1800 \text{ rpm}. Then, we utilize Equation 16.16 to compute the slip:

s=\frac{\omega_s-\omega_m}{\omega_s}=\frac{n_s-n_m}{n_s} \quad \quad \quad \quad \quad (16.16) \\ s=\frac{n_s-n_m}{n_s}=\frac{1800-1746}{1800}=0.03

We can use the data given to draw the equivalent circuit shown in Figure 16.14 for one phase of the motor. The impedance seen by the source is

\begin{matrix} Z_s=1.2+j2+\frac{j50(0.6+19.4+j0.8)}{j50+0.6+19.4+j0.8} \\ =1.2+j2+16.77+j7.392 \\ =17.97+j9.392 \\ = 20.28 \underline{/27.59^\circ} \ \Omega \end{matrix}

The power factor is the cosine of the impedance angle. Because the impedance is inductive, we know that the power factor is lagging:

\text{power factor}=\cos(27.59^\circ)=88.63 \% \text{ lagging}

For a delta-connected machine, the phase voltage is equal to the line voltage, which is specified to be 440 V rms. The phase current is

\textbf{I}_s=\frac{\textbf{V}_s}{Z_s}=\frac{440\underline{/0^\circ } }{20.28\underline{/27.59^\circ }}=21.70\underline{/-27.59^\circ }\text{ A rms}

Thus, the magnitude of the line current is

I_{\text{line}}=I_s\sqrt{3}=21.70 \sqrt{3}=37.59 \text{ A rms}

In ac machine calculations, we take the rms values of currents and voltages for the phasor magnitudes (instead of peak values as we have done previously).

The input power is

\begin{matrix} P_{\text{in}}=3I_sV_s\cos \theta \\ =3(21.70)440 \cos(27.59^\circ) \\=25.38 \text{ kW} \end{matrix}

Next, we compute \pmb{\text{V}}_x \text{ and }\pmb{\text{I}}_r^\prime:

\begin{matrix} \pmb{\text{V}}_x=\pmb{\text{I}}_s\frac{j50(0.6+19.4+j0.8)}{j50+0.6+19.4+j0.8} \\ =21.70 \underline{/-27.59^\circ} \times 18.33 \underline{/23.78^\circ} \\ =397.8 \underline{/-3.807^\circ} \text{ V rms} \\ \pmb{\text{I}}^\prime_r =\frac{\pmb{\text{V}}_x}{j0.8+0.6+19.4} \\ =\frac{397.8 \underline{/-3.807^\circ}}{20.01\underline{/1.718^\circ}} \\ =19.88 \underline{/-5.52 ^\circ} \text{ A rms} \end{matrix}

The copper losses in the stator and rotor are

\begin{matrix} P_s=3R_sI_s^2 \\=3(1.2)(21.70)^2 \\ =1695 \text{ W} \end{matrix}

and

\begin{matrix} P_r=3R_r^\prime(I^\prime_r)^2 \\ =3(0.6)(19.88)^2 \\ =711.4 \text{ W} \end{matrix}

Finally, the developed power is

\begin{matrix} P_{\text{dev}}=3 \times \frac{1-s}{s}R^\prime_r(I^\prime_r)^2 \\ =3(19.4)(19.88)^2 \\ =23.00 \text{ kW} \end{matrix}

As a check, we note that

P_{\text{in}}=P_{\text{dev}}+P_s+P_r

to within rounding error.

The output power is the developed power minus the rotational loss, given by

\begin{matrix} P_{\text{out}}=P_{\text{dev}}-P_{\text{rot}} \\= 23.00-0.900 \\ =22.1 \text{ kW} \end{matrix}

This corresponds to 29.62 hp, so the motor is operating at nearly its rated load. The output torque is

\begin{matrix} T_{\text{out}}=\frac{P_{\text{out}}}{\omega_m} \\ = \frac{22,100}{1746(2\pi/60)} \\ =120.9 \text{ Nm} \end{matrix}

The efficiency is

\begin{matrix} \eta=\frac{P_{\text{out}}}{P_{\text{in}}} \times 100\% \\ =\frac{22,100}{25,380} \times 100\% \\ = 87.0 \% \end{matrix}

Table 16.1 Synchronous Speed Versus Number of Poles for f60 Hz

P n_s
2 3600
4 1800
6 1200
8 900
10 720
12 600
16.14

Related Answered Questions