Question 31.4: Is Strangeness Conserved? A Determine whether the following ...

Is Strangeness Conserved?

A Determine whether the following reaction occurs on the basis of conservation of strangeness.

\pi^{0}+ n \quad \rightarrow \quad K ^{+}+\Sigma^{-}

B Show that the following reaction does not conserve strangeness.

\pi^{-}+ p \rightarrow \pi^{-}+\Sigma^{+}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A:

From Table 31.2, we see that the initial system has strangeness S = 0 + 0 = 0. Because the strangeness of the K ^{+} is S = +1 and the strangeness of the \Sigma^{-} is S = -1, the strangeness of the final sysstem is +1 – 1 = 0.
Therefore, strangeness is conserved and the reaction is allowed.

B:

The initial system has strangeness S = 0 + 0 = 0, and the final system has strangeness S = 0 + (-1) = -1. Therefore, strangeness is not conserved.

TABLE 31.2 Some Particles a+A1:L26nd Their PropertiesA1:L22
Category Particle Name Symbol Anti-particle Mass \left( MeV / c^{2}\right) B L_{e} L _{ \mu } L _{\tau} S Lifetime(s) Principal Decay \text { Modes }^{a}
Leptons Electron e^{-} e^{+} 0.511 0 +1 0 0 0 Stable
Electron– neutrino \nu_{e} \bar{\nu}_{e} <7 eV / c^{2} 0 +1 0 0 0 Stable
Muon \mu^{-} \mu^{+} 105.7 0 0 +1 0 0 2.20 \times 10^{-6} e ^{-\bar{\nu}_{e} \nu_{\mu}}
Muon–neutrino \nu_{\mu} \bar{\nu}_{\mu} <0.3 0 0 +1 0 0 Stable
Tau \tau^{-} \tau^{+} 1 784 0 0 0 +1 0 <4 \times 10^{-13} \mu^{-\bar{\nu}_{\mu}} \nu_{\tau}, e ^{-\bar{\nu}_{e} \nu_{\tau}}
Tau–neutrino \nu_{\tau} \bar{\nu}_{\tau} <30 0 0 0 +1 0 Stable
Hadrons
Mesons
Pion \pi^{+} \pi^{-} 139.6 0 0 0 0 0 2.60 \times 10^{-8} \mu^{+} \nu_{\mu}
\pi^{0} Self 135.0 0 0 0 0 0 0.83 \times 10^{-16} 2 \gamma
Kaon K ^{+} K ^{-} 493.7 0 0 0 0 +1 1.24 \times 10^{-8} \mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}
K _{ s }^{0} \overline{ K }_{ S } 0 497.7 0 0 0 0 +1 0.89 \times 10^{-10} \pi^{+} \pi^{-}, 2 \pi^{0}
K _{ L }^{0} \overline{ K }_{ L }^{0} 497.7 0 0 0 0 +1 5.2 \times 10^{-8} \begin{aligned}&\pi^{\pm} e ^{\mp} \bar{\nu}_{e}, 3 \pi^{0} \\&\pi^{\pm} \mu^{\mp} bar{\nu}_{\mu}\end{aligned}
Eta \eta Self 548.8 0 0 0 0 0 <10^{-18} 2 \gamma, 3 \pi^{0}
\eta^{\prime} Self 958 0 0 0 0 0 2.2 \times 10^{-21} \eta \pi^{+} \pi^{-}
Baryons Proton p \overline{ p } 938.3 +1 0 0 0 0 Stable
Neutron n \bar{n} 939.6 +1 0 0 0 0 614 pe ^{-\bar{\nu}_{e}}
Lambda \Lambda^{0} \bar{\Lambda}^{0} 1 115.6 +1 0 0 0 -1 2.6 \times 10^{-10} p \pi^{-}, n \pi^{0}
Sigma \Sigma^{+} \bar{\Sigma}^{-} 1 189.4 +1 0 0 0 -1 0.80 \times 10^{-10} p \pi^{0}, n \pi^{+}
\Sigma^{0} \bar{\Sigma}^{0} 192.5 +1 0 0 0 -1 6 \times 10^{-20} \Lambda^{0} \gamma
\Sigma^{-} \bar{\Sigma}^{+} 1 197.3 +1 0 0 0 -1 1.5 \times 10^{-10} n \pi^{-}
Delta \Delta^{++} \bar{\Delta}^{–} 1 230 +1 0 0 0 0 6 \times 10^{-24} p \pi^{+}
\Delta^{+} \bar{\Delta}^{-} 1 231 +1 0 0 0 0 6 \times 10^{-24} p \pi^{0}, n \pi^{+}
\Delta^{0} \bar{\Delta}^{0} 1 232 +1 0 0 0 0 6 \times 10^{-24} n \pi^{0}, p \pi^{-}
\Delta^{-} \bar{\Delta}^{+} 1 234 +1 0 0 0 0 6 \times 10^{-24} n \pi^{-}
Xi \Xi^{0} \bar{\Xi}^{0} 1 315 +1 0 0 0 -2 2.9 \times 10^{-10} \Lambda^{0} \pi^{0}
\Xi^{-} \bar{\Xi}^{+} 1 321 +1 0 0 0 -2 1.64 \times 10^{-10} \Lambda^{0} \pi^{-}
Omega \Omega^{-} \Omega^{+} 1 672 +1 0 0 0 -3 0.82 \times 10^{-10} \Xi^{-} \pi^{0}, \Xi^{0} \pi^{-}, \Lambda^{0} K ^{-}

 

Related Answered Questions

Question: 31.6

Verified Answer:

Figure 31.20 shows a large section of the Universe...