Question 8.T.10: Let f : [a, b] → [c, d] be Riemann integrable. If φ : [c, d]...
Let f : [a, b] → [c, d] be Riemann integrable. If φ : [c, d] → \mathbb{R} is continuous, then φ ◦ f is Riemann integrable on [a, b].
Learn more on how we answer questions.
Let ε > 0 be given. We shall prove the existence of a partition P ∈ \mathcal{P} (a, b) such that
U (φ ◦ f ) − L (φ ◦ f ) < ε.
Since φ is continuous on the compact interval [c, d] , it is bounded and uniformly continuous. Consequently there is a real constant K such that
|φ(t)| ≤ K for all t ∈ [c, d] , (8.12)
and if we set ε^{\prime} =\frac{ε}{2K + (b − a)}, we know that there is a δ > 0 such that
s, t ∈ [c, d] , |t − s| < δ ⇒ |φ (t) − φ (s)| < ε^{\prime}. (8.13)
On the other hand, since f ∈ \mathcal{R}(a, b) , there is a partition P = \left\{x_{0}, x_{1}, …, x_{n}\right\} such that
U (f, P ) − L (f, P ) < ε^{\prime}δ. (8.14)
Let
M_{i} = \sup \left\{f (x) : x ∈ [x_{i}, x_{i+1}]\right\}
M^{∗}_{i} = \sup \left\{φ (f (x)) : x ∈ [x_{i}, x_{i+1}]\right\}
m_{i} = \inf \left\{f (x) : x ∈ [x_{i}, x_{i+1}]\right\}
m^{∗}_{i} = \inf \left\{φ (f (x)) : x ∈ [x_{i}, x_{i+1}]\right\} .
We then have
U (φ \circ f ) − L (φ \circ f) = \sum\limits_{i=0}^{n−1}{(M^{∗}_{ i} − m^{∗}_{i} ) (x_{i+1} − x_{i})}
= \sum\limits_{i∈J_{1}}{(M^{∗}_{ i} − m^{∗}_{i} ) (x_{i+1} − x_{i})}
+ \sum\limits_{i∈J_{2}}{(M^{∗}_{ i} − m^{∗}_{i} ) (x_{i+1} − x_{i})} , (8.15)
where
J_{1} = \left\{i ∈ \left\{0, 1, . . . , n − 1\right\} : M_{i} − m{i} < δ\right\}
J_{2} = \left\{i ∈ \left\{0, 1, . . . , n − 1\right\} : M_{i} − m_{i} ≥ δ\right\} .
If i ∈ J_{1}, then
|f (x) − f (y)| < δ for all x, y ∈ [x_{i}, x_{i+1}] ,
and therefore, using (8.13),
|φ (f (x)) − φ (f (y))| < ε^{\prime} for all x, y ∈ [x_{i}, x_{i+1}] ,
which implies that M^{∗}_{i} − m^{∗}_{i} ≤ ε^{\prime}. Therefore
\sum\limits_{i∈J_{1}}{(M^{∗}_{ i} − m^{∗}_{i} ) (x_{i+1} − x_{i})} ≤ \sum\limits_{i∈J_{1}}{ε^{\prime} (x_{i+1} − x_{i}) ≤ ε^{\prime} (b − a)} .
Now from (8.14) we see that
ε^{\prime}δ >\sum\limits_{i=0}^{n−1}{(M_{i} − m_{i}) (x_{i+1} − x_{i})}
≥ \sum\limits_{i∈J_{2}}{(M_{i} − m_{i}) (x_{i+1} − x_{i})}
≥ δ \sum\limits_{i∈J_{2}}{(x_{i+1} − x_{i})} ,
hence
\sum\limits_{i∈J_{2}}{(x_{i+1} − x_{i}) < ε^{\prime}} .
Since M^{∗}_{ i} − m^{∗}_{i} ≤ 2K, we must have
\sum\limits_{i∈J_{2}}{(M^{∗}_{ i} − m^{∗}_{i} ) (x_{i+1} − x_{i})} < 2Kε^{\prime}.
Using these inequalities in (8.15) yields
U (φ \circ f ) − L (φ \circ f ) < ε^{\prime} (b − a) + 2Kε^{\prime} = ε.