Question 10.T.3: Let I0 = {(a, b) : a, b ∈ R}, I1 = {[a, b] : a, b ∈ R}, I2 =...
Let
\mathcal{I}_{0} = \left\{(a, b) : a, b ∈ \mathbb{R}\right\},
\mathcal{I}_{1} = \left\{[a, b] : a, b ∈ \mathbb{R}\right\},
\mathcal{I}_{2} = \left\{(a, ∞) : a ∈ \mathbb{R}\right\},
\mathcal{I}_{3} = \left\{[a, ∞) : a ∈ \mathbb{R}\right\}.
Then \mathcal{B} = \mathcal{A(I}_{0}) = \mathcal{A(I}_{1}) = \mathcal{A(I}_{2}) = \mathcal{A(I}_{3}).
Learn more on how we answer questions.
It suffices to prove that
\mathcal{B} ⊇ \mathcal{A(I}_{0}) ⊇ \mathcal{A(I}_{1}) ⊇ \mathcal{A(I}_{2}) ⊇ \mathcal{A(I}_{3}) ⊇ \mathcal{B}.
For the first inclusion, note that
(a, b) = \overset{∞}{\underset{n=1}{\cup}} [a +1/n, b) ,
which proves that \mathcal{B} ⊇ \mathcal{I}_{0}, and hence \mathcal{B} ⊇ \mathcal{A(I}_{0}). The second inclusion follows from the observation that
[a, b] = \overset{∞}{\underset{n=1}{\cap}} (a − 1/n, b + 1/n)
⇒ \mathcal{A(I}_{0}) ⊇ \mathcal{I}_{1}
⇒ \mathcal{A(I}_{0}) ⊇ \mathcal{A(I}_{1}).
Similarly, the equalities
(a, ∞) = \overset{∞}{\underset{n=1}{\cup}} [a + 1/n, n]
[a, ∞) = \overset{∞}{\underset{n=1}{\cap}} (a − 1/n, ∞)
[a, b) = [a, ∞)\setminus[b, ∞)
lead to the remaining inclusions.