Question 7.T.18: Let the function f and all its derivatives up to order n be ...

Let the function f and all its derivatives up to order n be continuous on [a, b], and suppose f^{(n)} is differentiable at the point x_{0} ∈ [a, b]. If x ∈ [a, b] then

f(x) = f(x_{0}) + \frac{f^{′}(x_{0})}{1!}(x − x_{0}) + \frac{f^{′′} (x_{0})}{2!}(x − x_{0})^{2} + · · ·

+\frac{f^{(n)}(x_{0})}{n!}(x − x_{0})^{n} + \frac{f^{(n+1)}(x_{0})}{(n + 1)!}(x − x_{0})^{n+1} + E_{n}(x),        (7.22)

where E_{n}(x)/(x − x_{0})^{n+1} → 0 as x → x_{0}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let p be the polynomial

p(x) = f(x_{0})+  \frac{f^{′}(x_{0})}{1!}(x−x_{0})+ \frac{f^{′′}(x_{0})}{2!}(x−x_{0})^2 +· · ·+ \frac{f^{(n)}(x_{0})}{n!}(x−x_{0})^{n},

and define

P (x) = f(x) − p(x),   Q(x) = (x − x_{0})^{n+1}.

To prove the theorem, we have to show that

\underset{x→x_{0}}{\lim }\frac{P (x)}{Q(x)}=\frac{f ^{(n+1)}(x_{0})}{(n + 1)!}.

Observe that

p(x_{0}) = f(x{_{0}}),

p^{(k)}(x_{0}) = f^{(k)}(x_{0}),   k = 1, 2, · · · , n

which implies

P(x_{0}) = P^{′}(x_{0}) = · · · = P ^{(n)}(x_{0}) = 0.

Also

Q^{(k)}(x) =\frac{(n + 1)!}{(n + 1)!(n + 1 − k)!}(x − x_{0})^{n+1−k}

⇒ Q(x_{0}) = Q^{′}(x_{0}) = · · · = Q^{(n)}(x_{0}) = 0.

To evaluate the limit of P/Q at x_{0}, we apply L’Hôpital’s rule n times:

\underset{x→x_{0}}{\lim }\frac{P(x)}{Q(x)}=\underset{x→x_{0}}{\lim }\frac{P^{′}(x)}{Q^{′}(x)}

=\underset{x→x_{0}}{\lim }\frac{P^{′′}(x)}{Q^{′′}(x)}

= · · ·

=\underset{x→x_{0}}{\lim }\frac{P^{(n)}(x)}{Q^{(n)}(x)}

=\underset{x→x_{0}}{\lim }\frac{f^{(n)}(x) − p^{(n)}(x)}{(n + 1)!(x − x_{0})}

=\underset{x→x_{0}}{\lim }\frac{f^{(n)}(x) − f^{(n)}(x_{0})}{(n + 1)!(x − x_{0})}

=\frac{f ^{(n+1)}(x_{0})}{(n + 1)!}.

Related Answered Questions