Question 7.T.16: Let the functions f and g be differentiable on (a, b) and g′...
Let the functions f and g be differentiable on (a, b) and g^{′}(x) ≠ 0 for any x ∈ (a, b). If
\underset{x→a^{+}}{\lim } g(x) = \underset{x→a^{+}}{\lim } f(x) = ∞
and \underset{x→a^{+}}{\lim } \frac{f^{′}(x)}{g^{′}(x)} exists in \mathbb{\bar{R}}, then
\underset{x→a^{+}}{\lim } \frac{f(x)}{g(x)} = \underset{x→a^{+}}{\lim } \frac{f^{′}(x)}{g^{′}(x)}.
Learn more on how we answer questions.
We shall prove the theorem in the case when
\underset{x→a^{+}}{\lim } \frac{f^{′}(x)}{g^{′}(x)} =\ell
with \ell ∈ \mathbb{R}, and leave the cases when \ell = ±∞ as an exercise. Given ε > 0, there is a δ > 0 such that
\left|\frac{f^{′}(x)}{g^{′}(x)} – \ell\right| < ε for all x ∈ (a, a + δ). (7.13)
Choose any point c in (a, a + δ). Since f(x) → ∞ as x → a^{+}, there is a point d ∈ (a, c) (see Figure 7.8) such that
x ∈ (a, d) ⇒ f(x) > f(c).
Define the function h on (a, d) by
h(x) = \frac{1 − f(c)/f(x)}{1 − g(c)/g(x)},
and note that 1 − g(c)/g(x) ≠ 0 because g is injective on (a, b), and h(x) ≠ 0 because f(x) > f(c) on (a, d). Since f(c)/f(x) → 0 and g(c)/g(x) → 0 as x → a^{+}, it follows that \lim_{ x→a^{+}} h(x) = 1, so there is a t ∈ (a, d) such that
x ∈ (a, t) ⇒ |h(x) − 1| < ε^{′} = \min\left\{ε, 1/2\right\}
⇒ 1 − ε^{′} < h(x) < 1 + ε^{′}
⇒ \frac{1}{1|h(x)|} < \frac{1}{1 − ε^{′}} ≤ 2. (7.14)
Let x ∈ (a, t). We shall complete the proof by showing that
\left|\frac{f(x)}{g(x)} – \ell\right| < kε
for some constant k. Observe that
\frac{f(x)}{g(x)} = \frac{f(x)}{g(x)} \frac{h(x)}{h(x)} = \frac{f(x)− f (c)}{g(x)− g(c)} \frac{1}{h(x)}.
If we apply Cauchy’s mean value theorem to f and g on [x, c], and use the above equation, we obtain, for some y ∈ (x, c),
\frac{f^{′}(y)}{g^{′}(y)} = \frac{f(x)− f (c)}{g(x)− g(c)} = \frac{f(x)}{g(x)}h(x) for all x ∈ (a, d).
In view of (7.13) and (7.14), and with a < x < t < d < c < a + δ, we have
\left|\frac{f(x)}{g(x)}- \ell\right| = \left|\frac{f^{′}(y)}{g^{′}(y)} \frac{1}{h(x)} – \ell\right|
=\left|\frac{f^{′}(y)}{g^{′}(y)} – \ell h(x)\right| \frac{1}{\left|h(x)\right| }
≤ 2 \left(\left|\frac{f^{′}(y)}{g^{′}(y)} – \ell\right| + |\ell − \ell h(x)| \right)
≤ 2(ε + |\ell| ε)
≤ 2(1 + |\ell|)ε.
