Question 6.7.8: Let V be the space C[0, 1] with the inner product of Example...

Let V be the space C[0, 1] with the inner product of Example 7, and let W be the subspace spanned by the polynomials p_{1}(t)=1, p_{2}(t)=2 t-1, and p_{3}(t)=12 t^{2}. Use the Gram–Schmidt process to find an orthogonal basis for W .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { Let } q_{1}=p_{1}, \text { and compute }

\left\langle p_{2}, q_{1}\right\rangle=\int_{0}^{1}(2 t-1)(1) d t=\left.\left(t^{2}-t\right)\right|_{0} ^{1}=0.

\text { So } p_{2} \text { is already orthogonal to } q_{1} \text {, and we can take } q_{2}=p_{2} \text {. For the projection of } p_{3}\text { onto } W_{2}=\operatorname{Span}\left\{q_{1}, q_{2}\right\}, \text { compute }

\left\langle p_{3}, q_{1}\right\rangle=\int_{0}^{1} 12 t^{2} \cdot 1 d t=\left.4 t^{3}\right|_{0} ^{1}=4.

\left\langle q_{1}, q_{1}\right\rangle=\int_{0}^{1} 1 \cdot 1 d t=\left.t\right|_{0} ^{1}=1.

\left\langle p_{3}, q_{2}\right\rangle=\int_{0}^{1} 12 t^{2}(2 t-1) d t=\int_{0}^{1}\left(24 t^{3}-12 t^{2}\right) d t=2.

\left\langle q_{2}, q_{2}\right\rangle=\int_{0}^{1}(2 t-1)^{2} d t=\left.\frac{1}{6}(2 t-1)^{3}\right|_{0} ^{1}=\frac{1}{3}.

Then

\operatorname{proj}_{W_{2}} p_{3}=\frac{\left\langle p_{3}, q_{1}\right\rangle}{\left\langle q_{1}, q_{1}\right\rangle} q_{1}+\frac{\left\langle p_{3}, q_{2}\right\rangle}{\left\langle q_{2}, q_{2}\right\rangle} q_{2}=\frac{4}{1} q_{1}+\frac{2}{1 / 3} q_{2}=4 q_{1}+6 q_{2}.

and

q_{3}=p_{3}-\operatorname{proj}_{W_{2}} p_{3}=p_{3}-4 q_{1}-6 q_{2}.

\text { As a function, } q_{3}(t)=12 t^{2}-4-6(2 t-1)=12 t^{2}-12 t+2 \text {. The orthogonal basis }\text { for the subspace } W \text { is }\left\{q_{1}, q_{2}, q_{3}\right\} .

Related Answered Questions

Question: 6.8.P.2

Verified Answer:

The third-order Fourier approximation to f is the ...
Question: 6.8.4

Verified Answer:

Compute \frac{a_{0}}{2}=\frac{1}{2} \cdot \...
Question: 6.7.7

Verified Answer:

Inner product Axioms 1–3 follow from elementary pr...