Question B.3: Let w = 3 + 4i and z = 5 - 2i . Compute zz, |z|, and w/z.

\text { Let } w=3+4 i \text { and } z=5-2 i \text {. Compute } z \bar{z},|z| \text {, and } w / z .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From equation (3),

z \bar{z}=(a+b i)(a-b i)=a^{2}-a b i+b a i-b^{2} i^{2}=a^{2}+b^{2}         (3).

z \bar{z}=5^{2}+(-2)^{2}=25+4=29.

For the absolute value, |z|=\sqrt{z \bar{z}}=\sqrt{29} . \text { To compute } w / z, first multiply both the numerator and the denominator by \bar{z}, the conjugate of the denominator. Because of (3), this eliminates the i in the denominator:

z \bar{z}=(a+b i)(a-b i)=a^{2}-a b i+b a i-b^{2} i^{2}=a^{2}+b^{2}         (3).

\frac{w}{z}=\frac{3+4 i}{5-2 i}.

=\frac{3+4 i}{5-2 i} \cdot \frac{5+2 i}{5+2 i}.

=\frac{15+6 i+20 i-8}{5^{2}+(-2)^{2}}.

=\frac{7+26 i}{29}.

=\frac{7}{29}+\frac{26}{29} i.