Question 3.1.3: Linear Approximation to Some Cube Roots Use a linear approxi...

Linear Approximation to Some Cube Roots

Use a linear approximation to approximate 8.023,8.073,8.153 and 25.23\sqrt[3]{8.02}, \sqrt[3]{8.07}, \sqrt[3]{8.15} \text { and } \sqrt[3]{25.2}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here we are approximating values of the function f(x)=x3=x1/3f(x)=\sqrt[3]{x}=x^{1 / 3}. So, f(x)=13x2/3f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}. The closest number to any of 8.02, 8.07 or 8.15 whose cube root we know exactly is 8. So, we write

f(8.02)=f(8)+[f(8.02)f(8)]f(8.02)=f(8)+[f(8.02)-f(8)] Add and substract f(8).

=f(8)+Δy=f(8)+\Delta y. (1.5)

From (1.4), we have

Δy=f(x1)f(x0)f(x0)Δx=dy\Delta y=f\left(x_1\right)-f\left(x_0\right) \approx f^{\prime}\left(x_0\right) \Delta x=d y (1.4)

Δydy=f(8)Δx\Delta y \approx d y=f^{\prime}(8) \Delta x

=(13)82/3(8.028)=1600=\left(\frac{1}{3}\right) 8^{-2 / 3}(8.02-8)=\frac{1}{600}. Since Δx = 8.02 − 8. (1.6)

Using (1.5) and (1.6), we get

f(8.02)f(8)+dy=2+16002.0016667f(8.02) \approx f(8)+d y=2+\frac{1}{600} \approx 2.0016667,

while your calculator accurately returns 8.0232.0016653\sqrt[3]{8.02} \approx 2.0016653. Similarly, we get

f(8.07)f(8)+1382/3(8.078)2.0058333f(8.07) \approx f(8)+\frac{1}{3} 8^{-2 / 3}(8.07-8) \approx 2.0058333

and f(8.15)f(8)+1382/3(8.158)2.0125f(8.15) \approx f(8)+\frac{1}{3} 8^{-2 / 3}(8.15-8) \approx 2.0125,

while your calculator returns 8.0732.005816 and 8.1532.01242\sqrt[3]{8.07} \approx 2.005816 \text { and } \sqrt[3]{8.15} \approx 2.01242. In the margin, we show a table with the error in using the linear approximation to approximate x3\sqrt[3]{x}. Note how the error grows large as x gets farther from 8.

To approximate 25.23\sqrt[3]{25.2}, observe that 8 is not the closest number to 25.2 whose cube root we know exactly. Since 25.2 is much closer to 27 than to 8, we write

f(25.2)=f(27)+Δyf(27)+dy=3+dyf(25.2)=f(27)+\Delta y \approx f(27)+d y=3+d y.

In this case,

dy=f(27)Δx=13272/3(25.227)=13(19)(1.8)=115d y=f^{\prime}(27) \Delta x=\frac{1}{3} 27^{-2 / 3}(25.2-27)=\frac{1}{3}\left(\frac{1}{9}\right)(-1.8)=-\frac{1}{15}

and we have f(25.2)3+dy=31152.9333333f(25.2) \approx 3+d y=3-\frac{1}{15} \approx 2.9333333,

compared to the value of 2.931794, produced by your calculator. In Figure 3.5, you can clearly see that the farther the value of x gets from the point of tangency, the worse the approximation tends to be.

1

Related Answered Questions