Question 14.11: Locate the shear centre of the section shown below in Figure...
Locate the shear centre of the section shown below in Figure 14.46.

Learn more on how we answer questions.
The section is symmetric. Therefore, by putting α = π/2 in Eq. (1) of Example 14.10 we obtain
\bar{I}_{z z}=\frac{\pi}{2} R^3 t+2(b t) R^2=\left\lgroup \frac{\pi}{2} R^3+2 b R^2 \right\rgroup t
or \bar{I}_{z z}=\frac{R^2 t}{2}(\pi R+4 b) (1)
Let us now find stress distribution in leg AB
Considering the shaded area in Figure 14.47, we obtain
\left(\tau_{x z}\right)_{ AB }=\frac{V_y Q_z}{t \bar{I}_{z z}}
\text { where } Q_z=\text { st } R\left(\tau_{x z}\right)_{ AB }=\left\lgroup \frac{V_y R}{\bar{I}_{z z}} \right\rgroup s ; \quad 0 \leq s \leq b (2)
Now, force carried by leg AB is
F_1=\int_0^b\left(\tau_{x z}\right)_{ AR } t d s=\left\lgroup \frac{V_y R T}{\bar{I}_{z z}} \right\rgroup \int_0^b s d s
Thus,
F_1=\left\lgroup\frac{b^2 R t}{2 \bar{I}_{z z}} \right\rgroup V_y (3)
From Example 14.10, we can find the shear stress \tau_{x \phi} distribution in the semicircular leg by putting α = π/2 in Eq. (2) and adding Q_z of A given by
Q_z=R^2 t\left[\cos \left\lgroup \frac{\pi}{2}-\phi \right\rgroup -\cos \frac{\pi}{2}\right]+b t R
and so
\tau_{x \phi}=R\left\lgroup \frac{V_y}{\bar{I}_{z z}} \right\rgroup (R \sin \phi+b) ; \quad 0 \leq \phi \leq \frac{\pi}{2} (4)
We show the force distribution in Figure 14.48:
By computing moment of all forces about O, we obtain
V_y e=2 \int_0^{\pi / 2} \tau_{x \phi} t R^2 d \phi+2 R F_1
From Eqs. (2)–(4), we get
V_y e=2 \frac{V_y R^3 t^{\pi / 2}}{\bar{I}_{z z}} \int_0^2(R \sin \phi+b) d \phi+\frac{b^2 R^2 t}{\bar{I}_{z z}} V_y
Therefore,
e=\frac{2 R^4 t}{\bar{I}_{z z}}+\frac{b^2 R^2 t}{\bar{I}_{z z}}+\frac{\pi R^3 t b}{\bar{I}_{z z}}
or e=\frac{R^2 t}{\bar{I}_{z z}}\left(2 R^2+b^2+\pi R b\right)
From Eq. (1), putting \bar{I}_{z z} in the above equation, we obtain
e=\frac{2\left(2 R^2+b^2+\pi R b\right)}{(\pi R+4 b)}

