Question 14.3: Locate the shear centre of the section shown in Figure 14.23...

Locate the shear centre of the section shown in Figure 14.23 and analyse shear stresses and shear forces in different segments of the section due to the shear load, Vy V_y .

14.23
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First we determine Iˉzz \bar{I}_{z z} of the section as follows:

Iˉzz=2(IˉAB+IˉBD)zz+(IˉDE)zz \bar{I}_{z z}=2\left(\bar{I}_{ AB }+\bar{I}_{ BD }\right)_{z z}+\left(\bar{I}_{ DE }\right)_{z z}

since the section is symmetric with respect to z-axis. So,

Iˉzz=2[112b13t+(b1t)b1+b322+(b2t)b322]+112b33t \bar{I}_{z z}=2\left[\frac{1}{12} b_1^3 t+\left(b_1 t\right)\left\lgroup \frac{b_1+b_3}{2} \right\rgroup^2+\left(b_2 t\right)\left\lgroup \frac{b_3}{2} \right\rgroup^2\right]+\frac{1}{12} b_3^3 t

or          Iˉzz=t12[b32(b3+6b2+6b1)+4b12(2b1+3b3)] \bar{I}_{z z}=\frac{t}{12}\left[b_3^2\left(b_3+6 b_2+6 b_1\right)+4 b_1^2\left(2 b_1+3 b_3\right)\right]            (1)

Next, we determine the shear stress distribution as follows:

(a) Leg AB (refer Figure 14.24)

(τxy)AB=VyQztIˉzz \left|\left(\tau_{x y}\right)_{ AB }\right|=\left|\frac{V_y Q_z}{t \bar{I}_{z z}}\right|

where

Qz=(st)b32+b1s2 Q_z=(s t)\left\lgroup \frac{b_3}{2}+b_1-\frac{s}{2} \right\rgroup

Therefore,

(τxy)AB=VysIˉzz(b1+b32s2;0sb1 \left|\left(\tau_{x y}\right)_{ AB }\right|=\left|\frac{V_y s}{\bar{I}_{z z}}\left\lgroup (b_1+\frac{b_3}{2}-\frac{s}{2} \right\rgroup\right| ; \quad 0 \leq s \leq b_1               (2)

(b) Leg BD (refer Figure 14.25)

(τxz)BD=VyQztIˉzz \left|\left(\tau_{x z}\right)_{ BD }\right|=\left|\frac{V_y Q_z}{t \bar{I}_{z z}}\right|

where

Qz=(st)b32+(b1t)12(b1+b3) Q_z=(s t)\left\lgroup \frac{b_3}{2} \right\rgroup+\left(b_1 t\right) \frac{1}{2}\left(b_1+b_3\right)

Therefore,

(τxz)BD=Vy2Iˉzz[b1(b1+b3)+sb3];0sb2 \left|\left(\tau_{x z}\right)_{ BD }\right|=\left|\frac{V_y}{2 \bar{I}_{z z}}\left[b_1\left(b_1+b_3\right)+s b_3\right]\right| ; \quad 0 \leq s \leq b_2            (3)

(c) Leg DE (refer Figure 14.26)

(τxy)DE=VyQztIˉzz \left|\left(\tau_{x y}\right)_{ DE }\right|=\left|\frac{V_y Q_z}{t \bar{I}_{z z}}\right|

where

Qz=(b1t)12(b1+b3)+(b2t)b22+(st)12(b3s) Q_z=\left(b_1 t\right) \frac{1}{2}\left(b_1+b_3\right)+\left(b_2 t\right) \frac{b_2}{2}+(s t) \frac{1}{2}\left(b_3-s\right)

Therefore,

(τxy)DE=Vy2Iˉzz[b1(b1+b3)+b2b3+sb3s2] \left|\left(\tau_{x y}\right)_{ DE }\right|=\left|\left\lgroup \frac{V_y}{2 \bar{I}_{z z}} \right\rgroup\left[b_1\left(b_1+b_3\right)+b_2 b_3+s b_3-s^2\right]\right|                 (4)

(d) Leg EF

(τxz)EF=(τxz)BD \left|\left(\tau_{x z}\right)_{ EF }\right|=\left|\left(\tau_{x z}\right)_{ BD }\right|

(e) Leg FG

(τxy)FG=(τxy)AB \left|\left(\tau_{x y}\right)_{ FG }\right|=\left|\left(\tau_{x y}\right)_{ AB }\right|

The above shear stress distributions can be shown in Figure 14.27(a):

Now, we can find shear forces in different legs of the section shown in Figure 14.27(b) as follows:
From Eqs. (2)–(4), on integration, we get

F1=0b1(τxy)ABt ds=VytIˉzz0b1[b1+b32ss22]ds F_1=\int_0^{b_1}\left(\tau_{x y}\right)_{ AB } t  d s=\left\lgroup \frac{V_y t}{\bar{I}_{z z}} \right\rgroup \int_0^{b_1}\left[\left\lgroup b_1+\frac{b_3}{2} \right\rgroup s-\frac{s^2}{2}\right] d s

=VytIˉzz[b122(b1+b32)b136] =\left\lgroup \frac{V_y t}{\bar{I}_{z z}} \right\rgroup\left[\frac{b_1^2}{2}\left(b_1+\frac{b_3}{2}\right)-\frac{b_1^3}{6}\right]

=Vytb122Iˉzz[b1+b32b12]=Vytb122Iˉzz23b1+b32 =\frac{V_y t b_1^2}{2 \bar{I}_{z z}}\left[b_1+\frac{b_3}{2}-\frac{b_1}{2}\right]=\frac{V_y t b_1^2}{2 \bar{I}_{z z}}\left\lgroup \frac{2}{3} b_1+\frac{b_3}{2} \right\rgroup

or          F1=Vyb12t12Iˉzz(4b1+3b3) F_1=\frac{V_y b_1^2 t}{12 \bar{I}_{z z}}\left(4 b_1+3 b_3\right)        (5)

Similarly,

F2=Vyt2Iˉzz0b2[sb3+b1(b1+b3)]ds F_2=\frac{V_y t}{2 \bar{I}_{z z}} \int_0^{b_2}\left[s b_3+b_1\left(b_1+b_3\right)\right] d s

or          F2=Vyt2Iˉzz[b22b32+b1b2(b1+b3)] F_2=\frac{V_y t}{2 \bar{I}_{z z}}\left[\frac{b_2^2 b_3}{2}+b_1 b_2\left(b_1+b_3\right)\right]          (6)

and

F3=Vyt2Iˉzz{[b1(b1+b3)+b2b3]b3+b332b333} F_3=\left\lgroup \frac{V_y t}{2 \bar{I}_{z z}} \right\rgroup\left\{\left[b_1\left(b_1+b_3\right)+b_2 b_3\right] b_3+\frac{b_3^3}{2}-\frac{b_3^3}{3}\right\}

or          F3=Vyt2Iˉzz{[b1(b1+b3)+b2b3]b3+b336} F_3=\left\lgroup \frac{V_y t}{2 \bar{I}_{z z}} \right\rgroup\left\{\left[b_1\left(b_1+b_3\right)+b_2 b_3\right] b_3+\frac{b_3^3}{6}\right\}         (7)

We note from Eqs. (5) and (7),

2F1+F3=Vyb12t6Iˉzz(4b1+3b3)+Vyt2Iˉzz[b336+b3(b12+b1b3+b2b3)] 2 F_1+F_3=\frac{V_y b_1^2 t}{6 \bar{I}_{z z}}\left(4 b_1+3 b_3\right)+\frac{V_y t}{2 \bar{I}_{z z}}\left[\frac{b_3^3}{6}+b_3\left(b_1^2+b_1 b_3+b_2 b_3\right)\right]

=Vyt6Iˉzz[4b13+3b12b3b332+3b3(b12+b1b3+b2b3)] =\frac{V_y t}{6 \bar{I}_{z z}}\left[4 b_1^3+3 b_1^2 b_3 \frac{b_3^3}{2}+3 b_3\left(b_1^2+b_1 b_3+b_2 b_3\right)\right]

=Vyt12Iˉzz[8b13+6b12b3+b33+6b3(b12+b1b3+b2b3)] =\frac{V_y t}{12 \bar{I}_{z z}}\left[8 b_1^3+6 b_1^2 b_3+b_3^3+6 b_3\left(b_1^2+b_1 b_3+b_2 b_3\right)\right]

=Vyt12Iˉzz[4b12(2b1+3b3)+b32(b3+6b1+6b2)] =\frac{V_y t}{12 \bar{I}_{z z}}\left[4 b_1^2\left(2 b_1+3 b_3\right)+b_3^2\left(b_3+6 b_1+6 b_2\right)\right]

Thus, 2F1+F3=Vy 2 F_1+F_3=V_y from Eq. (1) above, and this is expected from equilibrium. Thus, we show in Figure 14.27(c) above the resultant force diagram, where resultant force Vy V_y passes through S. Clearly, from Varignon’s theorem of moments

Vye=b3F22b2F1 V_y e=b_3 F_2-2 b_2 F_1

From Eqs. (5) and (6),

Vye=Vyt2Iˉzz[b22b322+b1b2b3(b1+b3)]Vyb12b2t6Iˉzz(4b1+3b3) V_y e=\frac{V_y t}{2 \bar{I}_{z z}}\left[\frac{b_2^2 b_3^2}{2}+b_1 b_2 b_3\left(b_1+b_3\right)\right]-\frac{V_y b_1^2 b_2 t}{6 \bar{I}_{z z}}\left(4 b_1+3 b_3\right)

Therefore,

e=t6Iˉzz[3b22b322+3b1b2b3(b1+b3)4b13b23b12b2b3] e=\frac{t}{6 \bar{I}_{z z}}\left[\frac{3 b_2^2 b_3^2}{2}+3 b_1 b_2 b_3\left(b_1+b_3\right)-4 b_1^3 b_2-3 b_1^2 b_2 b_3\right]

=t12Iˉzz[3b22b32+6b12b2b3+6b1b2b328b13b26b12b2b3] =\frac{t}{12 \bar{I}_{z z}}\left[3 b_2^2 b_3^2+6 b_1^2 b_2 b_3+6 b_1 b_2 b_3^2-8 b_1^3 b_2-6 b_1^2 b_2 b_3\right]

or          e=3b2b32(b2+2b1)8b13b24b12(2b1+3b3)+b32(6b1+6b2+b3) e=\frac{3 b_2 b_3^2\left(b_2+2 b_1\right)-8 b_1^3 b_2}{4 b_1^2\left(2 b_1+3 b_3\right)+b_3^2\left(6 b_1+6 b_2+b_3\right)}

Note: Compare the above result with that of Problem 14.1.

14.24
14.25
14.26
14.27

Related Answered Questions

Question: 14.11

Verified Answer:

The section is symmetric. Therefore, by putting α ...
Question: 14.10

Verified Answer:

From Figure 14.43(b) shown above, as the section i...
Question: 14.7

Verified Answer:

Noting the symmetry of the section shown in Figure...
Question: 14.6

Verified Answer:

Noting the symmetry of the given thin-walled secti...
Question: 14.5

Verified Answer:

Here again we note from Figure 14.31(b) that [late...
Question: 14.4

Verified Answer:

The section is symmetric. Clearly, we must have [l...