First we determine Iˉzz of the section as follows:
Iˉzz=2(IˉAB+IˉBD)zz+(IˉDE)zz
since the section is symmetric with respect to z-axis. So,
Iˉzz=2[121b13t+(b1t)⎩⎪⎧2b1+b3⎭⎪⎫2+(b2t)⎩⎪⎧2b3⎭⎪⎫2]+121b33t
or Iˉzz=12t[b32(b3+6b2+6b1)+4b12(2b1+3b3)] (1)
Next, we determine the shear stress distribution as follows:
(a) Leg AB (refer Figure 14.24)
∣∣∣(τxy)AB∣∣∣=∣∣∣∣tIˉzzVyQz∣∣∣∣
where
Qz=(st)⎩⎪⎧2b3+b1−2s⎭⎪⎫
Therefore,
∣∣∣(τxy)AB∣∣∣=∣∣∣∣IˉzzVys⎩⎪⎧(b1+2b3−2s⎭⎪⎫∣∣∣∣;0≤s≤b1 (2)
(b) Leg BD (refer Figure 14.25)
∣(τxz)BD∣=∣∣∣∣tIˉzzVyQz∣∣∣∣
where
Qz=(st)⎩⎪⎧2b3⎭⎪⎫+(b1t)21(b1+b3)
Therefore,
∣(τxz)BD∣=∣∣∣∣2IˉzzVy[b1(b1+b3)+sb3]∣∣∣∣;0≤s≤b2 (3)
(c) Leg DE (refer Figure 14.26)
∣∣∣(τxy)DE∣∣∣=∣∣∣∣tIˉzzVyQz∣∣∣∣
where
Qz=(b1t)21(b1+b3)+(b2t)2b2+(st)21(b3−s)
Therefore,
∣∣∣(τxy)DE∣∣∣=∣∣∣∣⎩⎪⎧2IˉzzVy⎭⎪⎫[b1(b1+b3)+b2b3+sb3−s2]∣∣∣∣ (4)
(d) Leg EF
∣(τxz)EF∣=∣(τxz)BD∣
(e) Leg FG
∣∣∣(τxy)FG∣∣∣=∣∣∣(τxy)AB∣∣∣
The above shear stress distributions can be shown in Figure 14.27(a):
Now, we can find shear forces in different legs of the section shown in Figure 14.27(b) as follows:
From Eqs. (2)–(4), on integration, we get
F1=∫0b1(τxy)ABt ds=⎩⎪⎧IˉzzVyt⎭⎪⎫∫0b1[⎩⎪⎧b1+2b3⎭⎪⎫s−2s2]ds
=⎩⎪⎧IˉzzVyt⎭⎪⎫[2b12(b1+2b3)−6b13]
=2IˉzzVytb12[b1+2b3−2b1]=2IˉzzVytb12⎩⎪⎧32b1+2b3⎭⎪⎫
or F1=12IˉzzVyb12t(4b1+3b3) (5)
Similarly,
F2=2IˉzzVyt∫0b2[sb3+b1(b1+b3)]ds
or F2=2IˉzzVyt[2b22b3+b1b2(b1+b3)] (6)
and
F3=⎩⎪⎧2IˉzzVyt⎭⎪⎫{[b1(b1+b3)+b2b3]b3+2b33−3b33}
or F3=⎩⎪⎧2IˉzzVyt⎭⎪⎫{[b1(b1+b3)+b2b3]b3+6b33} (7)
We note from Eqs. (5) and (7),
2F1+F3=6IˉzzVyb12t(4b1+3b3)+2IˉzzVyt[6b33+b3(b12+b1b3+b2b3)]
=6IˉzzVyt[4b13+3b12b32b33+3b3(b12+b1b3+b2b3)]
=12IˉzzVyt[8b13+6b12b3+b33+6b3(b12+b1b3+b2b3)]
=12IˉzzVyt[4b12(2b1+3b3)+b32(b3+6b1+6b2)]
Thus, 2F1+F3=Vy from Eq. (1) above, and this is expected from equilibrium. Thus, we show in Figure 14.27(c) above the resultant force diagram, where resultant force Vy passes through S. Clearly, from Varignon’s theorem of moments
Vye=b3F2−2b2F1
From Eqs. (5) and (6),
Vye=2IˉzzVyt[2b22b32+b1b2b3(b1+b3)]−6IˉzzVyb12b2t(4b1+3b3)
Therefore,
e=6Iˉzzt[23b22b32+3b1b2b3(b1+b3)−4b13b2−3b12b2b3]
=12Iˉzzt[3b22b32+6b12b2b3+6b1b2b32−8b13b2−6b12b2b3]
or e=4b12(2b1+3b3)+b32(6b1+6b2+b3)3b2b32(b2+2b1)−8b13b2
Note: Compare the above result with that of Problem 14.1.