Question 12.7: Measurements of the spectral, directional emissivity of a me...

Measurements of the spectral, directional emissivity of a metallic surface at T = 2000 K and λ = 1.0 μm yield a directional distribution that may be approximated as follows:

Determine corresponding values of the spectral, normal emissivity; the spectral, hemispherical emissivity; the spectral intensity of radiation emitted in the normal direction; and the spectral emissive power.

12.7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known: Directional distribution of ε_{λ,θ} at λ = 1 μm for a metallic surface at 2000 K.

Find:
1. Spectral, normal emissivity ε_{λ,n} and spectral, hemispherical emissivity ε_{λ}.
2. Spectral, normal intensity I_{λ,n} and spectral emissive power E_{λ}.

Analysis:
1. From the measurement of ε_{λ,θ} at λ = 1 μm, we see that

ε_{λ,n} = ε_{λ,θ}(1  μm, 0°) = 0.3

From Equation 12.42, the spectral, hemispherical emissivity is

ε_{λ}(λ, T) = 2\int_{0}^{\pi/2}{ε_{λ,θ}(λ, θ, T) \cos θ \sin θ  dθ}              (12.42)

ε_{λ}(1  μm) = 2\int_{0}^{\pi/2}{ε_{λ,θ} \cos θ \sin θ  dθ}

or

ε_{λ}(1  μm) = 2\left[0.3\int_{0}^{\pi/3}{\cos θ \sin θ  dθ} + 0.6\int_{\pi/3}^{4\pi/9}{\cos θ \sin θ  dθ}\right]\\ ε_{λ}(1  μm) = 2\left[0.3  \frac{\sin^{2} θ}{2}\bigg|_{0}^{\pi/3} + 0.6  \frac{\sin^{2} θ}{2}\bigg|_{\pi/3}^{4\pi/9}\right]\\ = 2\left[\frac{0.3}{2}(0.75) + \frac{0.6}{2} (0.97  –  0.75)\right]\\ ε_{λ}(1  μm) = 0.36

2. From Equation 12.38 the spectral intensity of radiation emitted at λ = 1 μm in the normal direction is

ε_{λ,θ}(λ, θ, \phi, T) \equiv \frac{I_{λ,e}(λ, θ, \phi, T)}{I_{λ,b}(λ, T)}              (12.38)

I_{λ,n}(1  μm, 0°, 2000  K) = ε_{λ,θ}(1  μm, 0°)I_{λ,b}(1  μm, 2000  K)

where ε_{λ,θ}(1  μm, 0°) = 0.3 and I_{λ,b}(1  μm, 2000  K) may be obtained from Table 12.2. For λT = 2000 μm · K, (I_{λ,b}/σT^{5}) = 0.493 × 10^{-4}  (μm · K · sr)^{-1} and

TABLE 12.2 Blackbody Radiation Functions
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} \pmb{F_{(0 → λ)}} λT (μm · K)
0.000000 0.375034 × 10^{-27} 0.000000 200
0.000000 0.490335 × 10^{-13} 0.000000 400
0.000014 0.104046 × 10^{-8} 0.000000 600
0.001372 0.991126 × 10^{-7} 0.000016 800
0.016406 0.118505 × 10^{-5} 0.000321 1,000
0.072534 0.523927 × 10^{-5} 0.002134 1,200
0.186082 0.134411 × 10^{-4} 0.007790 1,400
0.344904 0.249130 0.019718 1,600
0.519949 0.375568 0.039341 1,800
0.683123 0.493432 0.066728 2,000
0.816329 0.589649 × 10^{-4} 0.100888 2,200
0.912155 0.658866 0.140256 2,400
0.970891 0.701292 0.183120 2,600
0.997123 0.720239 0.227897 2,800
1.000000 0.722318 × 10^{-4} 0.250108 2,898
0.997143 0.720254 × 10^{-4} 0.273232 3,000
0.977373 0.705974 0.318102 3,200
0.943551 0.681544 0.361735 3,400
0.900429 0.650396 0.403607 3,600
0.851737 0.615225 × 10^{-4} 0.443382 3,800
0.800291 0.578064 0.480877 4,000
0.748139 0.540394 0.516014 4,200
0.696720 0.503253 0.548796 4,400
0.647004 0.467343 0.579280 4,600
0.599610 0.433109 0.607559 4,800
0.554898 0.400813 0.633747 5,000
0.513043 0.370580 × 10^{-4} 0.658970 5,200
0.474092 0.342445 0.680360 5,400
0.438002 0.316376 0.701046 5,600
0.404671 0.292301 0.720158 5,800
0.373965 0.270121 0.737818 6,000
0.345724 0.249723 × 10^{-4} 0.754140 6,200
0.319783 0.230985 0.769234 6,400
0.295973 0.213786 0.783199 6,600
0.274128 0.198008 0.796129 6,800
0.254090 0.183534 0.808109 7,000
0.235708 0.170256 × 10^{-4} 0.819217 7,200
0.218842 0.158073 0.829527 7,400
0.203360 0.146891 0.839102 7,600
0.189143 0.136621 0.848005 7,800
0.176079 0.127185 0.856288 8,000
0.147819 0.106772 × 10^{-4} 0.874608 8,500
0.124801 0.901463 × 10^{-5} 0.890029 9,000
0.105956 0.765338 0.903085 9,500
0.090442 0.653279 × 10^{-5} 0.914199 10,000
0.077600 0.560522 0.923710 10,500
0.066913 0.483321 0.931890 11,000
0.057970 0.418725 0.939959 11,500
0.050448 0.364394 × 10^{-5} 0.945098 12,000
0.038689 0.279457 0.955139 13,000
0.030131 0.217641 0.962898 14,000
0.023794 0.171866 × 10^{-5} 0.969981 15,000
0.019026 0.137429 0.973814 16,000
0.012574 0.908240 × 10^{-6} 0.980860 18,000
0.008629 0.623310 0.985602 20,000
0.003828 0.276474 0.992215 25,000
0.001945 0.140469 × 10^{-6} 0.995340 30,000
0.000656 0.473891 × 10^{-7} 0.997967 40,000
0.000279 0.201605 0.998953 50,000
0.000058 0.418597 × 10^{-8} 0.999713 75,000
0.000019 0.135752 0.999905 100,000

I_{λ,b} = 0.493 × 10^{-4}  (μm · K · sr)^{-1} × 5.67 × 10^{-8}  W/m^{2} · K^{4}  (2000  K)^{5}\\ I_{λ,b} = 8.95 × 10^{4}  W/m^{2} · μm · sr

Hence

I_{λ,n}(1  μm, 0°, 2000  K) = 0.3 × 8.95 × 10^{4}  W/m^{2} · μm · sr\\ I_{λ,n}(1  μm, 0°, 2000  K) = 2.69 × 10^{4}  W/m^{2} · μm · sr

From Equation 12.40 the spectral emissive power for λ = 1 μm and T = 2000 K is

ε_{λ}(λ, T) \equiv \frac{E_{λ}(λ, T)}{E_{λ,b}(λ, T)}              (12.40)

E_{λ}(1  μm, 2000  K) = ε_{λ}(1  μm)E_{λ,b}(1  μm, 2000  K)

where

E_{λ,b}(1  μm, 2000  K) = \pi I_{λ,b}(1  μm, 2000  K)\\E_{λ,b}(1  μm, 2000  K) = \pi  sr × 8.95 × 10^{4}  W/m^{2} · μm · sr\\ = 2.81 × 10^{5}  W/m^{2} · μm

Hence

E_{λ}(1  μm, 2000  K) = 0.36 × 2.81 × 10^{5}  W/m^{2} · μm

or

E_{λ}(1  μm, 2000  K) = 1.01 × 10^{5}  W/m^{2} · μm

Related Answered Questions

Question: 12.2

Verified Answer:

Known: Spectral distribution of surface irradiatio...