Question 10.4: Obtain relations for the energy transfer in an enclosure of ...

Obtain relations for the energy transfer in an enclosure of two infinite parallel plates at temperatures T_1 and T_2 bounding a well-mixed gas at uniform temperature T_g.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation 10.72,

\sum\limits_{j=1}^{N}{}\left\lgroup \frac{\delta_{kj}}{\epsilon _{\lambda,k }}-F_{k-j}\frac{1-\epsilon _{ \lambda ,k}}{\epsilon _{ \lambda ,k}}\overline{t}_{\lambda ,k-j} \right\rgroup q_{\lambda,j } =\sum\limits_{j=1}^{N}{[(\delta_{kj} -F_{k-j}\overline{t}_{\lambda ,k-j} )E_{\lambda b,j}-F_{k-j}\overline{\alpha}_{\lambda ,k-j} E_{ \lambda b,g}]}                       (10.72)

applied to a two-surface enclosure, gives for k = 1 and 2 (note that F_{1–1} =F_{2–2} = 0):

\frac{1}{\epsilon _{\lambda ,1}} q_{\lambda ,1}-F_{1-2}\frac{1-\epsilon _{\lambda ,2}}{\epsilon _{\lambda ,2}} \overline{t} _{\lambda ,1-2}q_{\lambda ,2}=E_{\lambda b,1}-F_{1-2} \overline{t} _{\lambda ,1-2}E_{\lambda b,2}-F_{1-2}\overline{\alpha}_{\lambda ,1-2} E_{\lambda b,g}                                (10.75a)

-F_{2-1}\frac{1-\epsilon _{\lambda ,1}}{\epsilon _{\lambda ,1}} \overline{t} _{\lambda ,2-1}q_{\lambda ,1}+\frac{1}{\epsilon _{\lambda ,2}} q_{\lambda ,2}=-F_{2-1} \overline{t} _{\lambda ,2-1}E_{\lambda b,1}-F_{2-1}\overline{\alpha}_{\lambda ,2-1} E_{\lambda b,g}+E_{\lambda b,g}                        (10.75b)

For infinite parallel plates, F_{1–2 }= F_{2–1} = 1 , and from Equations 10.69 and 10.70 \overline{t} _{\lambda ,2-1}=\overline{t} _{\lambda ,1-2} and \overline{\alpha } _{\lambda ,2-1}=\overline{\alpha} _{\lambda ,1-2} For simplicity, the numerical subscripts on \overline{t} and \overline{\alpha } are omitted. Then Equations 10.75a and 10.75b become

\frac{1}{\epsilon _{\lambda ,1}} q_{\lambda ,1}-\frac{1-\epsilon _{\lambda ,2}}{\epsilon _{\lambda ,2}} \overline{t} _{\lambda }q_{\lambda ,2}=E_{\lambda b,1}-\overline{t} _{\lambda }E_{\lambda b,2}-\overline{\alpha}_{\lambda } E_{\lambda b,g}          (10.76a)

-\frac{1-\epsilon _{\lambda ,1}}{\epsilon _{\lambda ,1}} \overline{t} _{\lambda }q_{\lambda ,1}+\frac{1}{\epsilon _{\lambda ,2}}q_{\lambda ,2} =\overline{t} _{\lambda }E_{\lambda b,1}+E_{\lambda b,2}-\overline{\alpha}_{\lambda } E_{\lambda b,g}              (10.76b)

Equations 10.76a and 10.76b are solved for q_{λ,1} and q_{λ,2}. After using the relation \overline{\alpha }_λ = 1− \overline{t } , this yields

q_{\lambda ,1}=\frac{1}{1-(1-\epsilon _{\lambda ,1})(1-\epsilon _{\lambda ,2})\overline{t}_{\lambda }^{2} }\left\{\epsilon _{\lambda ,1}\epsilon _{\lambda ,2}\overline{t}_\lambda (E_{\lambda b,1}-E_{\lambda b,2})+\epsilon _{\lambda ,1}(1-\overline{t}_\lambda )\times \left[1+(1-\epsilon _{\lambda ,2})\overline{t}_\lambda \right](E_{\lambda b,1}-E_{\lambda b,g}) \right\}                         (10.77a)

q_{\lambda ,2}=\frac{1}{1-(1-\epsilon _{\lambda ,1})(1-\epsilon _{\lambda ,2})\overline{t}_{\lambda }^{2} }\left\{\epsilon _{\lambda ,1}\epsilon _{\lambda ,2}\overline{t}_\lambda (E_{\lambda b,2}-E_{\lambda b,1})+\epsilon _{\lambda ,2}(1-\overline{t}_\lambda )\times \left[1+(1-\epsilon _{\lambda ,1})\overline{t}_\lambda \right](E_{\lambda b,2}-E_{\lambda b,g}) \right\}             (10.77b)

The total energy fluxes added to surfaces 1 and 2 are

q_1=\int_{\lambda =0}^{\infty }{q_{\lambda ,1}}d\lambda and q_2=\int_{\lambda =0}^{\infty }{q_{\lambda ,2}}d\lambda               (10.78)

The total energy added to the gas to maintain its temperature T_g is equal to the net energy leaving the parallel plates. Hence, per unit area of the plates,

q_g = −(q_1 + q_2 )          (10.79)

When the medium between the plates does not absorb or emit radiation, then \overline{t}_λ = 1 and Equations 10.77a and 10.77b reduce to Equation 5.5.

Q_{1 \xrightleftharpoons[]{} 2}=Q_{1\longrightarrow 2}-Q_{2\longrightarrow 1}=\sigma T_1^4A_1F_{1-2}-\sigma T_2^4A_2F_{2-1}            (5.5)

With an absorbing radiating gas, the numerical integration of Equations 10.77a and 10.77b over all λ to obtain q_1 and q_2 is difficult because of the very irregular variations of the gas absorption coefficient with λ; some methods for detailed integrations were discussed in Chapter 9.

Related Answered Questions