Question 6.7: Parallel Resonant Circuit , Find the L and C values for a pa...
Parallel Resonant Circuit
Find the L and C values for a parallel resonant circuit that has R = 10 kΩ, f_0 = 1 \text{ MHz},and B = 100 kHz. If \pmb{\text{I}}=10^{-3}\underline{/0^\circ} \text{ A}, draw the phasor diagram showing the currents through each of the elements in the circuit at resonance.
Learn more on how we answer questions.
First, we compute the quality factor of the circuit. Rearranging Equation 6.46 and substituting v alues, we have
Q_p=\frac{f_0}{B} =\frac{10^6}{10^5}=10
Solving Equation 6.41 for the inductance and substituting values, we get
L=\frac{R}{2\pi f_0 Q_p} =\frac{10^4}{2\pi \times 10^6 \times 10}=159.2 \ \mu\text{H}
Similarly, using Equation 6.42, we find that
C=\frac{Q_p}{2 \pi f_0 R} =\frac{10}{2 \pi \times 10^6 \times 10^4}=159.2 \text{ pF}
At resonance, the voltage is given by
\pmb{\text{V}}_{\text{out}}=\pmb{\text{I}}R=(10^{-3} \underline{/0^\circ}) \times 10^4=10 \underline{/0^\circ} \text{ V}
and the currents are given by
\pmb{\text{I}}_R=\frac{\pmb{\text{V}}_{\text{out}}}{R} =\frac{10 \underline{/0^\circ}}{10^4}=10^{-3} \underline{/0^\circ}\text{ A}\\ \pmb{\text{I}}_L=\frac{\pmb{\text{V}}_{\text{out}}}{j2 \pi f_0L} =\frac{10 \underline{/0^\circ}}{j10^3} =10^{-2} \underline{/-90^\circ} \text{ A} \\ \pmb{\text{I}}_C=\frac{\pmb{\text{V}}_{\text{out}}}{-j/2 \pi f_0C} =\frac{10 \underline{/0^\circ}}{-j10^3} =10^{-2}\underline{/90^\circ} \text{ A}
The phasor diagram is shown in Figure 6.31. Notice that the currents through the inductance and capacitance are larger in magnitude than the applied source current.
However, since \pmb{\text{I}}_C \text{ and }\pmb{\text{I}}_L are out of phase, they cancel.
