Question 10.2.3: Performing Scalar Multiplication and Matrix Subtraction Let ...

Performing Scalar Multiplication and Matrix Subtraction

Let A=\left[\begin{array}{rrr}1 & 2 & 0 \\-1 & 3 & 1 \\2 & -1 & 4\end{array}\right] \text { and } B=\left[\begin{array}{rrr}2 & 1 & 3 \\1 & 0 & -2 \\-3 & 4 & 5\end{array}\right]. Find the following.

a. 3A            b. 2B              c. 3A – 2B

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a.    3 A=3\left[\begin{array}{rrr}1 & 2 & 0 \\-1 & 3 & 1 \\2 & -1 & 4\end{array}\right]=\left[\begin{array}{ccc}3(1) & 3(2) & 3(0) \\3(-1) & 3(3) & 3(1) \\3(2) & 3(-1) & 3(4)\end{array}\right]=\left[\begin{array}{rrr}3 & 6 & 0 \\-3 & 9 & 3 \\6 & -3 & 12\end{array}\right]

b.    2 B=2\left[\begin{array}{rrr}2 & 1 & 3 \\1 & 0 & -2 \\-3 & 4 & 5\end{array}\right]=\left[\begin{array}{ccc}2(2) & 2(1) & 2(3) \\2(1) & 2(0) & 2(-2) \\2(-3) & 2(4) & 2(5)\end{array}\right]=\left[\begin{array}{rrr}4 & 2 & 6 \\2 & 0 & -4 \\-6 & 8 & 10\end{array}\right]

c.  3 A-2 B=3 A+(-1) 2 B

=\left[\begin{array}{rrr}3 & 6 & 0 \\-3 & 9 & 3 \\6 & -3 & 12\end{array}\right]+\left[\begin{array}{rrr}-4 & -2 & -6 \\-2 & 0 & 4 \\6 & -8 & -10\end{array}\right] \begin{aligned}&\text { Substitute from parts a and } b \\&\text { changing the sign of each entry } \\&\text { in } B .\end{aligned}

=\left[\begin{array}{ccc}3+(-4) & 6+(-2) & 0+(-6) \\-3+(-2) & 9+0 & 3+4 \\6+6 & -3+(-8) & 12+(-10)\end{array}\right]=\left[\begin{array}{rrr}-1 & 4 & -6 \\-5 & 9 & 7 \\12 & -11 & 2\end{array}\right]

a

Related Answered Questions

Question: 10.4.3

Verified Answer:

Expanding by the first row, we have |A|=a_...
Question: 10.4.1

Verified Answer:

a. \left|\begin{array}{rr}3 & -4 \\1 &a...
Question: 10.3.5

Verified Answer:

a. For the matrix A, a=5, b=2, c=4, \text {...
Question: 10.2.8

Verified Answer:

Because A is of order 2×2 and the order of B is 2×...
Question: 10.2.2

Verified Answer:

a. Because A and B have the same order, A + B is d...