Question 11.3: Practicing Spontaneity Using the data from Table 11.1, predi...

Practicing Spontaneity
Using the data from Table 11.1, predict whether 1 M HN O_{3} will dissolve gold metal to form a 1 M Au^{3+}  solution.

Table 11.1
Standard Reduction Potentials at 25°C (298 K) for Many Common Half-reactions

Half-reaction \xi°  ( V ) Half-reaction \xi°  ( V )
F_{2} + 2 e^{-} →  2 F^{-} 2.87 O_{2}  + 2 H_{2}O + 4 e^{-} → 4 OH^{-} 0.40
Ag^{2+} +  e^{-} →  Ag^{+} 1.99 Cu^{2+} +  2 e^{-} → Cu  0.34
Co^{3+} +  e^{-} →  Co^{2+} 1.82 Hg_{2}Cl_{2} + 2 e^{-}  → 2 Hg  + 2 Cl^{-}  0.27
H_{2}O_{2}  +  2 H^{+} + 2 e^{-} → 2 H_{2}O 1.78 AgCl + e^{-}  → Ag + Cl^{-} 0.22
Ce^{4+} +  e^{-} →  Ce^{3+} 1.70 SO_{4}^{2-}  + 4 H^{+}  + 2 e^{-}  → H_{2}SO_{3} +  H_{2}O   0.20
PbO_{2}  + 4 H^{+} + SO_{4}^{2-}  + 2 e^{-} →   Pb SO_{4}  +  2  H_{2}O 1.69 Cu^{2+} + e^{-} →  Cu^{+}  0.16
MnO_{4}^{-} + 4 H^{+} +  3 e^{-} →   Mno_{2} +  2  H_{2}O 1.68 2 H^{+}  +  2 e^{-} → H _{2}   0.00
IO_{4}^{-}  + 2 H^{+}  + 2 e^{-} →  IO_{3}^{-}  + H_{2}O 1.60 Fe^{3+} +  3 e^{-} →  Fe – 0.036
MnO_{4}^{-} + 8 H^{+}  + 5 e^{-} → Mn^{2+} +  4 H_{2}O 1.51 Pb^{2+} +  2 e^{-} → Pb  – 0.13
Au^{3+} +  3 e^{-} →  Au 1.50 Sn^{2+} +  2 e^{-} → Sn – 0.14
PbO_{2}  + 4 H^{+} + 2  e^{-} →  Pb^{2+}  + 2 H_{2}O 1.46 Ni^{2+} +  2 e^{-} → Ni – 0.23
Cl_{2} + 2  e^{-} → 2Cl ^{-} 1.36 Pb SO_{4} +  2 e^{-}  →  Pb +  SO_{4} ^{2-} – 0.35
Cr_{2}O_{7} ^{2-} + 14 H^{+} + 6  e^{-} →2 Cr ^{3+}+ 7  H_{2}O   1.33 Cd ^{2+} +  2 e^{-} →  Cd – 0.40
O_{2}  +  4 H^{+} +  4  e^{-} → 2 H_{2}O 1.23 Fe^{2+} +  2 e^{-}  →  Fe – 0.44
MnO_{2} + 4 H^{+}   + 2 e^{-} → Mn ^{2+}  +  2 H_{2}O   1.21 Cr ^{3+} +  e^{-}  →  Cr^{2+} – 0.50
IO_{3}^{-}  + 6 H^{+}   +  5  e^{-}  → \frac{1}{2}I _{2}  +  3 H_{2}O 1.20 Cr ^{3+} +  3 e^{-}  →  Cr – 0.73
Br _{2} + 2  e^{-}   →  2 Br^{-} 1.09 Zn^{2+} +  2 e^{-}  →  Zn – 0.76
VO_{2}^{+}   + 2 H^{+}  + e^{-}   → VO^{2+}  + H_{2}O    1.00 2 H_{2}O +  2 e^{-}  → H_{2} + 2 OH^{-}   – 0.83
AuCl_{4}^{-}  + 3 e^{-}   → Au  + 4 Cl^{-} 0.99 Mn^{2+} +  2 e^{-}  →  Mn – 1.18
NO_{3}^{-} +   4 H^{+} + 3 e^{-}   → NO + 2 H_{2}O  0.96 Al^{3+} +  3 e^{-}  → Al  – 1.66
ClO_{2} +  e^{-}   →  ClO_{2}^{-} 0.954 H _{2} +  2 e^{-}  → 2 H ^{-} – 2.23
2 Hg ^{2+} + 2   e^{-}   →  Hg_{2} ^{2+} 0.91 Mg^{2+} +  2 e^{-}  → Mg – 2.37
Ag^{+} + e^{-}   →Ag 0.80 La^{3+} +  3 e^{-}  → La – 2.37
Hg_{2} ^{2+} + 2 e^{-}   → 2 Hg 0.80 Na^{+} + e^{-}   → Na – 2.71
Fe^{3+} + e^{-}   → Fe^{2+}  0.77 Ca^{2+} +  2 e^{-}  → Ca – 2.76
O_{2} + 2 H^{+} + 2 e^{-}   → H_{2} O_{2} 0.68 Ba^{2+} +  2 e^{-}  → Ba – 2.90
MnO_{4}^{-} + e^{-}   → MnO_{4}^{2-} 0.56 K^{+} + e^{-}   → K – 2.92
I_{2}  + 2 e^{-}   → 2 I^{-} 0.54 Li^{+} + e^{-}   → Li – 3.05
Cu ^{+}  +  e^{-}   → Cu 0.52
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

What are we trying to solve?
We want to determine if gold will dissolve in 1 M nitric acid (HNO_{3} ) to form a 1  M  Au^{3+} solution. To make this determination, we need to see if the reaction between Au and HN O_{3} to form Au^{3+} is spontaneous or has a standard potential greater than zero. We must use the appropriate half-reactions. For this process to occur, gold would be oxidized, so the HNO_{3} would act as an oxidizing agent.

The half-reaction for HN O_{3} acting as an oxidizing agent is

NO_{3} ^{-}  + 4 H ^{+}  + 3 e ^{-} → NO  + 2H_{2}O                ξ° (cathode)= 0.96  V

The reaction for the oxidation of solid gold to Au^{3+} ions is

Au →  Au^{3+}  + 3 e ^{-}                               – ξ° (anode)= –  1.50  V

The sum of these half-reactions gives the required reaction:

Au (s)  +  NO_{3} ^{-} (aq) + 4 H ^{+}  (aq) → Au^{3+} (aq)  + NO (g)  + 2 H_{2}O  (l)

and

  ξ° _{cell}  =  0.96   V  –   1.50  V =  –  0.54   V

Since the ξ° value is negative, the process will not occur under standard conditions. That is, gold will not dissolve in 1 M HN O_{3} to give 1 M Au^{3+}. In fact, a mixture (1 : 3 by volume) of concentrated nitric and hydrochloric acid, called aqua regia, is required to dissolve gold.

Related Answered Questions