Question 19.3: Predict what redox reaction will take place, if any, when mo...
Predict what redox reaction will take place, if any, when molecular bromine (\text{Br}_2) is added to (a) a 1-M solution of \text{NaI} and (b) a 1-M solution of \text{NaCl}. (Assume a temperature of 25°\text{C}.)
Strategy In each case, write the equation for the redox reaction that might take place and use E° values to determine whether or not the proposed reaction will actually occur.
Setup From Table 19.1:
\text{Br}_2(l) + 2e^– → 2\text{Br}^–(aq) E° = 1.07 \text{V}
\text{I}_2(s) + 2e^– → 2\text{I}^–(aq) E° = 0.53 V
\text{Cl}_2(\text{g}) + 2e^– → 2\text{Cl}^–(aq) E° = 1.36 V
TA B L E 1 9 . 1 Standard Reduction Potentials at 25°\text{C} ^* | |||
\text{Increasing strength as oxidizing agent}
\uparrow |
Half-Reaction | E°(\text{V}) |
\text{ncreasing strength as reducing agent} \downarrow |
\text{F}_2(\text{g}) + 2e^– → 2\text{F}^–(aq) | +2.87 | ||
\text{O}_3(\text{}g) + 2\text{H}^+(aq) + 2e^– → \text{O}_2(\text{g}) + \text{H}_2\text{O}(l) | +2.07 | ||
\text{Co}^{3+}(aq) + e^– → \text{Co}^{2+}(aq) | +1.82 | ||
\text{H}_2\text{O}_2(aq) + 2\text{H}^+(aq) + 2e^– → 2\text{H}_2\text{O}(l) | +1.77 | ||
\text{PbO}_2(s) + 4\text{H}^+(aq) + \text{SO}_4^2–(aq) + 2e^– → \text{PbSO}_4(s) + 2\text{H}_2\text{O}(l) | +1.70 | ||
\text{Ce}^{4+}(aq) + e^– → \text{Ce}^{3+}(aq) | +1.61 | ||
\text{MnO}_4^– (aq) + 8\text{H}^+(aq) + 5e^– → \text{Mn}^{2+}(aq) + 4\text{H}_2\text{O}(l) | +1.51 | ||
\text{Au}^{3+}(aq) + 3e^– → \text{Au}(s) | +1.50 | ||
\text{Cl}_2(\text{g}) + 2e^– → 2\text{Cl}^–(aq) | +1.36 | ||
\text{Cr}_2\text{O}_7^{2–}(aq) + 14\text{H}^+(aq) + 6e^– → 2\text{Cr}^{3+}(aq) + 7\text{H}_2\text{O}(l) | +1.33 | ||
\text{MnO}_2(s) + 4\text{H}^+(aq) + 2e^– → \text{Mn}^{2+}(aq) + 2\text{H}_2\text{O}(l) | +1.23 | ||
\text{O}_2(\text{g}) + 4\text{H}^+(aq) + 4e^– → 2\text{H}_2\text{O}(l) | +1.23 | ||
\text{Br}_2(l) + 2e^– → 2\text{Br}^–(aq) | +1.07 | ||
\text{NO}_3^– (aq) + 4\text{H}^+(aq) + 3e^– → \text{NO(g)} + 2\text{H}_2\text{O}(l) | +0.96 | ||
2\text{Hg}^{2+}(aq) + 2e^– → \text{Hg}_2^{2+}(aq) | +0.92 | ||
\text{Hg}_2^{2+}(aq) + 2e^– → 2\text{Hg}(l) | +0.85 | ||
\text{Ag}^+(aq) + e^– → \text{Ag}(s) | +0.80 | ||
\text{Fe}^{3+}(aq) + e^– → \text{Fe}^{2+}(aq) | +0.77 | ||
\text{O}_2(\text{g}) + 2\text{H}^+(aq) + 2e^– → \text{H}_2\text{O}_2(aq) | +0.68 | ||
\text{MnO}_4^– (aq) + 2\text{H}_2\text{O}(l) + 3e^– → \text{MnO}_2(s) + 4\text{OH}^–(aq) | +0.59 | ||
\text{I}_2(s) + 2e^– → 2\text{I}^–(aq) | +0.53 | ||
\text{O}_2(\text{g}) + 2\text{H}_2\text{O}(l) + 4e^– → 4\text{OH}^–(aq) | +0.40 | ||
\text{Cu}^{2+}(aq) + 2e^– → \text{Cu}(s) | +0.34 | ||
\text{AgCl}(s) + e^– → \text{Ag}(s) + \text{Cl}^–(aq) | +0.22 | ||
\text{SO}_4^{2–}(aq) + 4\text{H}^+(aq) + 2e^– → \text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(l) | +0.20 | ||
\text{Cu}^{2+}(aq) + e^– → \text{Cu}^+(aq) | +0.15 | ||
\text{Sn}^{4+}(aq) + 2e^– → \text{Sn}^{2+}(aq) | +0.13 | ||
2\text{H}^+(aq) + 2e^– → \text{H}_2(\text{g}) | 0.00 | ||
\text{Pb}^{2+}(aq) + 2e^– → \text{Pb}(s) | –0.13 | ||
\text{Sn}^{2+}(aq) + 2e^– → \text{Sn}(s) | –0.14 | ||
\text{Ni}^{2+}(aq) + 2e^– → \text{Ni}(s) | –0.25 | ||
\text{Co}^{2+}(aq) + 2e^– → \text{Co}(s) | –0.28 | ||
\text{PbSO}_4(s) + 2e^– → \text{Pb}(s) + \text{SO}_4^{2–}(aq) | –0.31 | ||
\text{Cd}^{2+}(aq) + 2e^– → \text{Cd}(s) | –0.40 | ||
\text{Fe}^{2+}(aq) + 2e^– → \text{Fe}(s) | –0.44 | ||
\text{Cr}^{3+}(aq) + 3e^– → \text{Cr}(s) | –0.74 | ||
\text{Zn}^{2+}(aq) + 2e^– → \text{Zn}(s) | –0.76 | ||
2\text{H}_2\text{O}(l) + 2e^– → \text{H}_2(\text{g}) + 2\text{OH}^–(aq) | –0.83 | ||
\text{Mn}^{2+}(aq) + 2e^– → \text{Mn}(s) | –1.18 | ||
\text{Al3}^+(aq) + 3e^– → \text{Al}(s) | –1.66 | ||
\text{Be}^{2+}(aq) + 2e^– → \text{Be}(s) | –1.85 | ||
\text{Mg}^{2+}(aq) + 2e^– → \text{Mg}(s) | –2.37 | ||
\text{Na}^+(aq) + e^– → \text{Na}(s) | –2.71 | ||
\text{Ca}^{2+}(aq) + 2e^– → \text{Ca}(s) | –2.87 | ||
\text{Sr}^{2+}(aq) + 2e^– → \text{Sr}(s) | –2.89 | ||
\text{Ba}^{2+}(aq) + 2e^– → \text{Ba}(s) | –2.90 | ||
\text{K}^+(aq) + e^– → \text{K}(s) | –2.93 | ||
Li+(aq) + e– → Li(s) | –3.05 | ||
^* For all half-reactions the concentration is 1 M for dissolved species and the pressure is 1 atm for gases. These are the standard-state values. |
Learn more on how we answer questions.
(a) If a redox reaction is to occur, it will be the oxidation of \text{I}^– ions by \text{Br}_2:
\text{Br}_2(l) + 2\text{I}^–(aq) → 2\text{Br}^–(aq) + \text{I}_2(s)
Because the reduction potential of \text{Br}_2 is greater than that of \text{I}_2, \text{Br}_2 will be reduced to \text{Br}^– and \text{I}^– will be oxidized to \text{I}_2. Thus, the preceding reaction will occur.
(b) In this case, the proposed reaction is the reduction of \text{Br}_2 by \text{Cl}^– ions:
\text{Br}_2(l) + 2\text{Cl}^–(aq) → 2\text{Br}^–(aq) + \text{Cl}_2(\text{g})
However, because the reduction potential of \text{Br}_2 is smaller than that of \text{Cl}_2, this reaction will not occur. \text{Cl}_2 is more readily reduced than \text{Br}_2, so \text{Br}_2 is not reduced by \text{Cl}^–.