Question 15.6: Preloaded Bolt Clamping of a Cylinder under External Load A ...

Preloaded Bolt Clamping of a Cylinder under External Load

A steel bolt-and-nut clamps a steel cylinder of known cross section and length subjected to an external load P, as illustrated in Figure 15.16.

Given: D = 20 mm, L = 65 mm, d = 10 mm, E = E_{b} = E_{p} = 200 GPa

P = 8 kN.         A_{t} = 58 mm² (from Table 15.2)

S_{p} = 380 MPa   and   S_{y} = 420 MPa (by Table 15.5)

Find:

a. Preload and bolt tightening torque

b. Joint stiffness factor

c. Maximum tensile stress in the bolt

d. Factors of safety against yielding and separation

Assumptions: Connection is reused. The effects of the flanges on the joint stiffness will be omitted.

F15.16
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

See Figures 15.11 and 15.16.

The cross-sectional area of the parts is equal to A_p=\pi\left(D^2-d^2\right) / 4=\pi\left(20^2-10^2\right) / 4= 235.6mm².

a. Through the use of Equation 15.20, the preload is

F_i=\left\{\begin{array}{cc} 0.75 F_p & \text { (reused connections) } \\ 0.9 F_p & \text { (permanent connections) } \end{array}\right.      (15.20)

F_i=0.75 F_p=0.75 S_p A_t=0.75(380)(58)=16.53  kN

This corresponds to an estimated bolt tightening torque (see Section 15.8) of

T=0.2 F_i d=0.2(16.53)(10)=33.06  N \cdot m

b. From Equation 15.33a, the lengths of thread L_{t} and shank L_{s} of the bolt (Figure 15.12) are

L_t=\left\{\begin{array}{cr} 2 d+6 & L \leq 125 \\ 2 d+12 & 125<L \leq 200 \\ 2 d+25 & L>200 \end{array}\right.        (15.33a)

\begin{array}{l} L_t=2 d+6=2(10)+6=26  mm \\ L_s=L-L_t=65-26=39  mm \end{array}

The stiffness constant for the bolt, by Equation 15.32, is

\frac{1}{k_b}=\frac{L_t}{A_t E_b}+\frac{L_{ s }}{A_b E_b}      (15.32)

\frac{1}{k_b}=\frac{L_t}{A_t E}+\frac{L_s}{A_s E}=\frac{1}{200\left(10^6\right)}\left[\frac{26}{58}+\frac{39(4)}{\pi(10)^2}\right], \quad k_b=2.117\left(10^8\right)  N / m

By Equation 15.31b, the stiffness constant for the parts is

k_p=\frac{A_p E_p}{L}          (15.31b)

k_p=\frac{A_p E}{L}=\frac{235.6 \times 10^{-6}\left(200 \times 10^9\right)}{65 \times 10^{-3}}=7.249\left(10^8\right)  N / m

The joint stiffness factor, using Equation 15.22, is therefore

C=\frac{k_b}{k_p+k_b}=\frac{2.117}{7.249+2.117}=0.226

Comment: The results indicate that k_p \approx 3.4 k_b .

c. From Equations 15.23 and 15.24, the forces on the bolt and parts are

F_b=C P+F_i \quad\left(\text { for } F_p<0\right)       (15.23)

F_p=(1-C) P-F_i \quad\left(\text { for } F_p<0\right)     (15.24)

\begin{array}{l} F_b=F_i+C P=16.53+0.226(8)=18.34 kN \\ F_p=F_i-(1-C) P=16.53-(1-0.226)(8)=10.34 kN \end{array}

The largest tensile stress in the bolt equals

\sigma_b=\frac{F_b}{A_t}=\frac{18.34\left(10^3\right)}{58\left(10^{-6}\right)}=316  MPa

Comment: No stress-concentration factor applies for a statically loaded ductile material.

d. The factor of safety with respect to onset of yielding is equal to

n=\frac{S_y}{\sigma_b}=\frac{420}{316}=1.33

Applying Equation 15.28, the load required to separate the joint and factor of
safety against joint separation are

P_s=\frac{F_i}{(1-C)}           (15.28a)

n_s=\frac{P_s}{P}=\frac{F_i}{P(1-C)}      (15.28b)

\begin{array}{l} P_s=\frac{F_i}{(1-C)}=\frac{16.53}{(1-0.226)}=21.36  kN \\ n_s=\frac{P_s}{P}=\frac{21.36}{8}=2.67 \end{array}

Comment: Both safety factors found against yielding and separation are acceptable.

Table 15.2
Basic Dimensions of ISO (Metric) Screw Threads
Coarse Threads Fine Threads
Nominal Diameter, d (mm) Pitch, p (mm) Tensile Stress Area, A_{t} (mm^{2}) Pitch, p (mm) Tensile Stress Area, A_{t \prime} (mm^{2})
2 0.4 2.07
3 0.5 5.03
4 0.7 8.78
5 0.8 14.2
6 1 20.1
7 1 28.9
8 1.25 36.6 1.25 39.2
10 1.5 58.0 1.25 61.2
12 1.75 84.3 1.25 92.1
14 2 115 1.5 125
16 2 157 1.5 167
18 2.5 192 1.5 216
20 2.5 245 1.5 272
24 3 353 2 384
30 3.5 561 2 621
36 4 817 2 915
42 4.5 1120 9 1260
48 5 1470 2 1670
56 5.5 2030 2 2300
64 6 2680 2 3030
Source: ANSI/ASME Standards, B1.1–2014, B1.13–2005, New York, American Standards Institute, 2005.
Notes: Metric threads are specified by nominal diameter and pitch in millimeters, for example,
M10 × 1.5. The letter M, which proceeds the diameter, is the clue to the metric designation; root
or minor diameter d_r \approx d-1.227 p .
Table 15.5
Metric Specifications and Strengths for Steel Bolts
Class Number Size Range Diameter, d (mm) Proof Strength, S_{p} (MPa) Yield Strength, S_{y} (MPa) Tensile Strength, S_{u} (MPa) Material Carbon Content
4.6 M5–M36 225 240 400 Low or medium
4.8 M1.6–M16 310 340 420 Low or medium
5.8 M5–M24 380 420 520 Low or medium
8.8 M3–M36 600 660 830 Medium, Q&T
9.8 M1,6–M 16 650 720 900 Medium, Q&T
10.9 M5–M36 830 940 1040 Low, martensite, Q&T
12.9 M1.6–M36 970 1100 1220 Alloy, Q&T
Source: Society of Automotive Engineers Standard J429k, 2011.
F15.11
F15.12

Related Answered Questions