Question 15.6: Preloaded Bolt Clamping of a Cylinder under External Load A ...
Preloaded Bolt Clamping of a Cylinder under External Load
A steel bolt-and-nut clamps a steel cylinder of known cross section and length subjected to an external load P, as illustrated in Figure 15.16.
Given: D = 20 mm, L = 65 mm, d = 10 mm, E = E_{b} = E_{p} = 200 GPa
P = 8 kN. A_{t} = 58 mm² (from Table 15.2)
S_{p} = 380 MPa and S_{y} = 420 MPa (by Table 15.5)
Find:
a. Preload and bolt tightening torque
b. Joint stiffness factor
c. Maximum tensile stress in the bolt
d. Factors of safety against yielding and separation
Assumptions: Connection is reused. The effects of the flanges on the joint stiffness will be omitted.

Learn more on how we answer questions.
See Figures 15.11 and 15.16.
The cross-sectional area of the parts is equal to A_p=\pi\left(D^2-d^2\right) / 4=\pi\left(20^2-10^2\right) / 4= 235.6mm².
a. Through the use of Equation 15.20, the preload is
F_i=\left\{\begin{array}{cc} 0.75 F_p & \text { (reused connections) } \\ 0.9 F_p & \text { (permanent connections) } \end{array}\right. (15.20)
F_i=0.75 F_p=0.75 S_p A_t=0.75(380)(58)=16.53 kN
This corresponds to an estimated bolt tightening torque (see Section 15.8) of
T=0.2 F_i d=0.2(16.53)(10)=33.06 N \cdot m
b. From Equation 15.33a, the lengths of thread L_{t} and shank L_{s} of the bolt (Figure 15.12) are
L_t=\left\{\begin{array}{cr} 2 d+6 & L \leq 125 \\ 2 d+12 & 125<L \leq 200 \\ 2 d+25 & L>200 \end{array}\right. (15.33a)
\begin{array}{l} L_t=2 d+6=2(10)+6=26 mm \\ L_s=L-L_t=65-26=39 mm \end{array}
The stiffness constant for the bolt, by Equation 15.32, is
\frac{1}{k_b}=\frac{L_t}{A_t E_b}+\frac{L_{ s }}{A_b E_b} (15.32)
\frac{1}{k_b}=\frac{L_t}{A_t E}+\frac{L_s}{A_s E}=\frac{1}{200\left(10^6\right)}\left[\frac{26}{58}+\frac{39(4)}{\pi(10)^2}\right], \quad k_b=2.117\left(10^8\right) N / m
By Equation 15.31b, the stiffness constant for the parts is
k_p=\frac{A_p E_p}{L} (15.31b)
k_p=\frac{A_p E}{L}=\frac{235.6 \times 10^{-6}\left(200 \times 10^9\right)}{65 \times 10^{-3}}=7.249\left(10^8\right) N / m
The joint stiffness factor, using Equation 15.22, is therefore
C=\frac{k_b}{k_p+k_b}=\frac{2.117}{7.249+2.117}=0.226
Comment: The results indicate that k_p \approx 3.4 k_b .
c. From Equations 15.23 and 15.24, the forces on the bolt and parts are
F_b=C P+F_i \quad\left(\text { for } F_p<0\right) (15.23)
F_p=(1-C) P-F_i \quad\left(\text { for } F_p<0\right) (15.24)
\begin{array}{l} F_b=F_i+C P=16.53+0.226(8)=18.34 kN \\ F_p=F_i-(1-C) P=16.53-(1-0.226)(8)=10.34 kN \end{array}
The largest tensile stress in the bolt equals
\sigma_b=\frac{F_b}{A_t}=\frac{18.34\left(10^3\right)}{58\left(10^{-6}\right)}=316 MPa
Comment: No stress-concentration factor applies for a statically loaded ductile material.
d. The factor of safety with respect to onset of yielding is equal to
n=\frac{S_y}{\sigma_b}=\frac{420}{316}=1.33
Applying Equation 15.28, the load required to separate the joint and factor of
safety against joint separation are
P_s=\frac{F_i}{(1-C)} (15.28a)
n_s=\frac{P_s}{P}=\frac{F_i}{P(1-C)} (15.28b)
\begin{array}{l} P_s=\frac{F_i}{(1-C)}=\frac{16.53}{(1-0.226)}=21.36 kN \\ n_s=\frac{P_s}{P}=\frac{21.36}{8}=2.67 \end{array}
Comment: Both safety factors found against yielding and separation are acceptable.
Table 15.2 Basic Dimensions of ISO (Metric) Screw Threads |
||||
Coarse Threads | Fine Threads | |||
Nominal Diameter, d (mm) | Pitch, p (mm) | Tensile Stress Area, A_{t} (mm^{2}) | Pitch, p (mm) | Tensile Stress Area, A_{t \prime} (mm^{2}) |
2 | 0.4 | 2.07 | ||
3 | 0.5 | 5.03 | ||
4 | 0.7 | 8.78 | ||
5 | 0.8 | 14.2 | ||
6 | 1 | 20.1 | ||
7 | 1 | 28.9 | ||
8 | 1.25 | 36.6 | 1.25 | 39.2 |
10 | 1.5 | 58.0 | 1.25 | 61.2 |
12 | 1.75 | 84.3 | 1.25 | 92.1 |
14 | 2 | 115 | 1.5 | 125 |
16 | 2 | 157 | 1.5 | 167 |
18 | 2.5 | 192 | 1.5 | 216 |
20 | 2.5 | 245 | 1.5 | 272 |
24 | 3 | 353 | 2 | 384 |
30 | 3.5 | 561 | 2 | 621 |
36 | 4 | 817 | 2 | 915 |
42 | 4.5 | 1120 | 9 | 1260 |
48 | 5 | 1470 | 2 | 1670 |
56 | 5.5 | 2030 | 2 | 2300 |
64 | 6 | 2680 | 2 | 3030 |
Source: ANSI/ASME Standards, B1.1–2014, B1.13–2005, New York, American Standards Institute, 2005. Notes: Metric threads are specified by nominal diameter and pitch in millimeters, for example, M10 × 1.5. The letter M, which proceeds the diameter, is the clue to the metric designation; root or minor diameter d_r \approx d-1.227 p . |
Table 15.5 Metric Specifications and Strengths for Steel Bolts |
|||||
Class Number | Size Range Diameter, d (mm) | Proof Strength, S_{p} (MPa) | Yield Strength, S_{y} (MPa) | Tensile Strength, S_{u} (MPa) | Material Carbon Content |
4.6 | M5–M36 | 225 | 240 | 400 | Low or medium |
4.8 | M1.6–M16 | 310 | 340 | 420 | Low or medium |
5.8 | M5–M24 | 380 | 420 | 520 | Low or medium |
8.8 | M3–M36 | 600 | 660 | 830 | Medium, Q&T |
9.8 | M1,6–M 16 | 650 | 720 | 900 | Medium, Q&T |
10.9 | M5–M36 | 830 | 940 | 1040 | Low, martensite, Q&T |
12.9 | M1.6–M36 | 970 | 1100 | 1220 | Alloy, Q&T |
Source: Society of Automotive Engineers Standard J429k, 2011. |

