Question 9.4: Problem: A Rankine cycle with regeneration is supplied super...

Problem: A Rankine cycle with regeneration is supplied superheated steam at a pressure of 6 MPa and temperature of 400 °C. The steam expands to a pressure of 0.8 MPa in the first stage of a turbine, after some of it is diverted into an open feedwater heater. The remaining steam expands in the second stage of the turbine, passes through a condenser at a pressure of 30 kPa, and leaves as saturated liquid that is pumped into the feedwater heater where it mixes with the steam that was removed. Saturated liquid leaves the feedwater heater at 0.8 MPa. Find (a) the fraction of steam extracted and (b) the thermal efficiency of the cycle.
Find: (a) Fraction of stream f extracted from the feedwater heater, (b) thermal efficiency
ηth,Rankine η_{th, \text{Rankine}} of the cycle.
Known: Turbine inlet pressure P3=P7=6 MPa, P_3 = P_7 = 6 \ MPa, turbine inlet temperature T3=400°C T_3 = 400 °C, feedwater heater pressure P5=P6=0.8 MPa, P_5 = P_6 = 0.8 \ MPa, condenser pressure P1=P4=30 kPa. P_1 = P_4 = 30 \ kPa.
Process Diagram: The Rankine cycle with regeneration on a T‐s diagram (Figure E9.4).
Assumptions: Expansion through the turbines is isentropic so S35=0 and ∆S34=0. ∆S_{35} = 0 \text{ and } ∆S_{34} = 0.
Governing Equations:

Feedwater mass flow fraction                                          f=h6 – h2h5 –  h2 f = \frac{h_6  –  h_2}{h_5  –   h_2}

Work of turbines with regeneration                             wt=(h3 – h5)+ (1 – f)(h5 – h4) w_t = (h_3  –  h_5) +  (1  –  f)(h_5  –  h_4)

Work to pumps with regeneration                              wp=(h7 – h6)+ (1 – f)(h2 – h1) w_p = (h_7  –  h_6) +  (1  –  f)(h_2  –  h_1)

Heat to boiler with regeneration                                   qH=h3 – h7 q _H = h_3  –  h_7

Thermal efficiency of Rankine cycle                             ηth,Rankine=wt – wpqH η_{th, \text{Rankine}} = \frac{w_t  –  w_p}{q_H}

E9.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For superheated steam at P3=6 MPa and T3=400°C P_3 = 6 \ MPa \text{ and } T_3 = 400 °C (Appendix 8c), specific enthalpy h3=3177.2 kJ / kg, h_3 = 3177.2 \ kJ \ / \ kg, and specific entropy s3=6.5408 kJ / kgK. s_3 = 6.5408 \ kJ \ / \ kgK.
For saturated water at P5=0.8 MPa P_5 = 0.8 \ MPa (Appendix 8b), specific enthalpy of liquid h5,f=721.11 kJ / kg and vapour h5,g=2769.1 kJ / kg, h_{5,f} = 721.11 \ kJ \ / \ kg \text{ and vapour } h_{5,g} = 2769.1 \ kJ \ / \ kg, and specific entropy of liquid s5,f=2.0462 kJ / kgK and vapour s5,g=6.6628 kJ / kgK. s_{5,f} = 2.0462 \ kJ \ / \ kgK \text{ and vapour } s_{5,g} = 6.6628 \ kJ \ / \ kgK. If expansion through the first stage of the turbine is isentropic, s5=s3=6.5408 kJ / kgK, s_5 = s_3 = 6.5408 \ kJ \ / \ kgK, then the quality of the mixture in the first stage is

x5=S5 – S5,fS5,g – S5,f=6.5408 kJ / kgK2.0462 kJ / kgK6.6628 kJ / kgK – 2.0462 kJ / kgK=0.973 57. x_5 = \frac{S_5  –  S_{5,f}}{S_{5,g}  –  S_{5,f}} = \frac{6.5408 \ kJ \ / \ kgK – 2.0462 \ kJ \ / \ kgK}{6.6628 \ kJ \ / \ kgK  –  2.0462 \ kJ \ / \ kgK} = 0.973 \ 57 .

The enthalpy at the turbine exit is then

h5= h5,f+x5(h5,g − h5,f), h_5 =  h_{5,f} + x_5 \left( h_{5,g}  −  h_{5, f} \right) ,

h5=721.11 kJ / kg+0.97357×(2769.1 kJ / kg – 721.11 kJ / kg)=2715.0 kJ / kg. h_5 = 721.11 \ kJ \ / \ kg + 0.97357 \times ( 2769.1 \ kJ \ / \ kg  –  721.11 \ kJ \ / \ kg) = 2715.0 \ kJ \ / \ kg.

For saturated water at P4=30 kPa P_4 = 30 \ kPa (Appendix 8b), specific enthalpy of liquid  h4,f=289.23 kJ / kg and vapour h4,g=2625.3 kJ / kg, h_{4,f} = 289.23 \ kJ \ / \ kg \text{ and vapour } h_{4,g} = 2625.3 \ kJ \ / \ kg, and specific entropy of liquid s4,f=0.9439 kJ / kgK and vapour s4,g=7.7686 kJ / kgK. s_{4,f} = 0.9439 \ kJ \ / \ kgK \text{ and vapour } s_{4,g} = 7.7686 \ kJ \ / \ kgK. If expansion through the second stage of the turbine is isentropic, s4=s3=6.5408 kJ / kgK, s_4 = s_3 = 6.5408 \ kJ \ / \ kgK, and quality in the second turbine is

x4=S4 – S4,fS4,g – S4,f=6.5408 kJ / kgK0.9439 kJ / kgK7.7686 kJ / kgK0.9439 kJ / kgK=0.820 09. x_4 = \frac{S_4  –  S_{4,f}}{S_{4,g}  –  S_{4,f}} = \frac{6.5408 \ kJ \ / \ kgK – 0.9439 \ kJ \ / \ kgK}{7.7686 \ kJ \ / \ kgK – 0.9439 \ kJ \ / \ kgK} = 0.820 \ 09 .

The enthalpy at the turbine exit is then

h4= h4,f+x4(h4,g − h4,f), h_4 =  h_{4,f} + x_4 \left( h_{4,g}  −  h_{4, f} \right) ,

h4=289.23 kJ / kg+0.82009×(2625.3 kJ / kg – 289.23 kJ / kg)=2205.0 kJ / kg. h_4 = 289.23 \ kJ \ / \ kg + 0.82009 \times ( 2625.3 \ kJ \ / \ kg  –  289.23 \ kJ \ / \ kg) = 2205.0 \ kJ \ / \ kg.

The enthalpy at the condenser exit at 30 kPa is h1=hf=289.23 h_1 = h_f = 289.23 kJ / kg.
The enthalpy at the exit of pump 1 is

h2=h1+wp,1=h1+v1(P2 – P1). h_2 = h _1 + w_{p,1} = h_1 + v_1 (P_2  –  P_1).

Using saturated water at P1=30 P_1 = 30 kPa (Appendix 8b), specific volume v1=vf=0.001 022 m3/kg, v_1 = v_f = 0.001 \ 022 \ m^3 / kg, then

h2=289.23 kJ / kgK+0.001 022 m3/kg×(6000 kPa  –  30 kPa)=295.33 kJ / kg h_2 = 289.23 \text{ kJ / kgK} + 0.001 \ 022 \ m^3 / kg \times (6000 \ kPa   –   30 \ kPa) = 295.33 \text{ kJ / kg}

The enthalpy at the exit of the feedwater heater is h6=h5,f=721.11 h_6 = h_{5,f} = 721.11 kJ / kg.
The enthalpy at the exit of pump 2 is

h7=h6+wp,1=h6+v6(P7 – P6) h_7 = h_6 + w_{p,1} = h_6 + v_6 (P_7  –  P_6)

For saturated water at P6=0.8 P_6 = 0.8 MPa (Appendix 8b), specific volume v6=vf=0.00115  m3 / kg, v_6 = v_f = 0.00115   m3 \ / \ kg, then

h7=721.11 kJ / kgK+0.001115 m3/kg×(6000 kPa – 800 kPa)=726.91 kJ / kg h_7 = 721.11 \text{ kJ / kgK} + 0.001115 \ m^3 / kg \times (6000 \ kPa  –  800 \ kPa) = 726.91 \text{ kJ / kg} .

(a) The mass fraction of steam extracted for the feedwater heater can now be solved for:

f=h6 – h2h5 – h2=721.11 kJ / kg –295.33 kJ / kg 2715.0 kJ / kg –295.33 kJ / kg =0.175 97.f= \frac{h_6  –  h_2}{h_5  –  h_2} = \frac{721.11 \text{ kJ / kg } – 295.33 \text{ kJ / kg }}{2715.0 \text{ kJ / kg } – 295.33 \text{ kJ / kg }} = 0.175 \ 97 .

(b) The work done by the turbine is

wt=(h3 – h5)+(1 – f)(h5 – h4) w_t = (h_3  –  h_5) + (1  –  f) (h_5  –  h_4)

wt=(3177.2 kJ / kg –2715.0 kJ / kg )+(1 – 0.17597)(2715.0 kJ / kg –2205.0 kJ / kg )=882.46 kJ / kg  w_t = (3177.2 \text{ kJ / kg } – 2715.0 \text{ kJ / kg }) + (1  –  0.17597) (2715.0 \text{ kJ / kg } – 2205.0 \text{ kJ / kg }) =882.46 \text{ kJ / kg }

The total work done by both pumps is

wp=(h7 – h6)+(1 – f)(h2 – h1) w_p = (h_7  –  h_6) + (1  –  f) (h_2  –  h_1)

wp=(726.91 kJ / kg –721.11 kJ / kg )+(1 – 0.175 97)(295.33 kJ / kg –289.23 kJ / kg )=10.827 kJ / kg  w_p = (726.91 \text{ kJ / kg } – 721.11 \text{ kJ / kg }) + (1  –  0.175 \ 97) (295.33 \text{ kJ / kg } – 289.23 \text{ kJ / kg }) = 10.827 \text{ kJ / kg }

The heat input to the boiler is

qH=(h3  –  h7)=3177.2 kJ / kg –726.91 kJ / kg =2450.3 kJ / kg , q_H = (h_3   –   h_7) = 3177.2 \text{ kJ / kg } – 726.91 \text{ kJ / kg } = 2450.3 \text{ kJ / kg },

The thermal efficiency of the Rankine cycle is then

ηth,Rankine=wtwpqH=882.46 kJ / kg–10.827 kJ / kg2450.3 kJ / kg=0.355 73. η_{th, \text{Rankine}} = \frac{w_t – w_p}{q_H} = \frac{882.46 \text{ kJ / kg} – 10.827 \text{ kJ / kg}}{2450.3 \text{ kJ / kg} } = 0.355 \ 73 .

Answer: (a) The mass fraction of steam extracted is 17.6% and (b) the thermal efficiency of the Rankine cycle is 35.6%.

Related Answered Questions