Question 10.4: Problem: A regenerator with an effectiveness of 80% is added...

Problem: A regenerator with an effectiveness of 80% is added to the Brayton cycle of Example 10.3. Find the efficiency of the cycle with the regenerator.
Find: The efficiency η_{th, \text{Brayton}} of the cycle in Example 10.3 with a regenerator.
Known: Regenerator effectiveness ε = 0.8, Example 10.3 Brayton cycle with regeneration.
Diagram: Figure E10.4.
Assumptions: Air is an ideal gas with temperature dependent properties.
Governing Equation:
Effectiveness of Brayton cycle                            ε = \frac{ h_5 – h_2}{h_4 – h_2}

Efficiency of Brayton cycle                                  η_{th, \text{Brayton}} = \frac{w_{net}}{q_H} = 1 – \frac{q_C}{q_H} = 1- \frac{ h_4 – h_1}{h_3 – h_2}

E10.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From the solution to Example 10.3, specific enthalpies h_1 = 300.19 \ kJ / kg, \ h_2 = 579.8650 \ kJ / kg, \ h_3 = 1348.55 \ kJ / kg, \text{ and } h_4 = 715.1786 \ kJ / kg.
Enthalpy of the air at the exit of the regenerator is

h_5 = h_2 + ε (h_4   –   h_2),

h_5 = 579.8650 \ kJ/ kg + 0.8 \times (715.1786 \ kJ / kg  –  579.8650 \ kJ / kg) = 688.12 \ kJ/kg.

The new Brayton cycle efficiency is then

η_{th, \text{Brayton}} = \frac{w_{net}}{q_{H}} = \frac{w_{t}  –  w_{c}}{q_{H}} = \frac{(h_{3}  –  h_{4})  –  (h_{2}  –  h_{1})}{h_{3}  –  h_{5}}

η_{th, \text{Brayton}} = \frac{ (1348.55 \ kJ/ kg  –  715.1786 \ kJ / kg )  –  ( 579.8650 \ kJ / kg  –  300.19 \ kJ / kg ) }{1348.55 \ kJ / kg  –  688.12 \ kJ / kg } = 0.535 \ 55 .

Answer: The new cycle efficiency is 53.6%.

Related Answered Questions