Question 11.10: Prove that ∫¹0 (log x/1 − x)² dx = 2 ∑n=1^∞ 1/n².
Prove that
\int_{0}^{1}{\left(\frac{\log x}{1 − x}\right)^{2}} dx = 2 \sum\limits_{n=1}^{∞}{\frac{1}{n^{2}}}.
Learn more on how we answer questions.
For every x ∈ (−1, 1) we have the power series representation
\frac{1}{1 − x} = \sum\limits_{n=0}^{∞}{x^{n}}.
Differentiating both sides, we obtain
\frac{1}{(1 − x)^{2}} = \sum\limits_{n=1}^{∞}{nx^{n−1}}.
Using Corollary 11.3.1, we can write
\int_{0}^{1}{\left(\frac{\log x}{1 − x}\right)^{2}} dx = \sum\limits_{n=1}^{∞}{n \int_{0}^{1}{x^{n−1}(\log x)^{2}} dx}. (11.30)
When n = 1 the integral \int_{0}^{1} (\log x)^{2} dx on the right-hand side is improper, whereas the other integrals are Riemann integrals. In either case we use integration by parts (and L’Hôpital’s rule) to obtain
\int_{0}^{1}{x^{n−1}(\log x)^{2}} dx = \frac{x^{n}}{n} (\log x)^{2} \bigg|_{0}^{1} − \int_{0}^{1}{\frac{2x^{n−1} \log x}{n}} dx
= − \frac{2}{n} \left(\frac{x^{n} \log x}{n} \bigg|_{0}^{1} − \int_{0}^{1}{\frac{x^{n−1}}{n}} dx \right)
= \frac{2}{n^{3}}.
Substituting into (11.30) yields the desired equality.