Question 10.40: Prove that (a) sn(z + 4K) = sn z, (b) cn(z + 4K) = cn z, (c)...

Prove that (a) \operatorname{sn}(z+4 K)=\operatorname{sn} z, (b) \operatorname{cn}(z+4 K)=\operatorname{cn} z, (c) \operatorname{dn}(z+2 K)=\operatorname{dn} z.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Problem 10.39

(a) \operatorname{sn}(z+4 K)=-\operatorname{sn}(z+2 K)=\operatorname{sn} z

(b) \operatorname{cn}(z+4 K)=-\operatorname{cn}(z+2 K)=\operatorname{cn} z

(c) \operatorname{dn}(z+2 K)=\sqrt{1-k^{2} \operatorname{sn}^{2}(z+2 K)}=\sqrt{1-k^{2} \operatorname{sn}^{2} z}=\operatorname{dn} z

Another Method. The integrand 1 / \sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)} has branch points at t= \pm 1 and t= \pm 1 / k in the t plane [Fig. 10-10]. Consider the integral from 0 to w along two paths C_{1} and C_{2}. We can deform C_{2} into the path A B D E F G H J A+C_{1}, where B D E and G H J are circles of radius \epsilon while J A B and E F G, drawn separately for visual purposes, are actually coincident with the x axis.

We then have

\begin{aligned} \int\limits_{\underset{C_2}{0}}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}= & \int\limits_{0}^{1-\epsilon} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}+\int\limits_{B D E} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \\ & +\int\limits_{1-\epsilon}^{0} \frac{d x}{-\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}+\int\limits_{0}^{-1+\epsilon} \frac{d x}{-\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} \\ & +\int\limits_{G H J} \frac{d t}{-\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}+\int\limits_{-1+\epsilon}^{\theta} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} \\ & +\int\limits_{\underset{C_1}{0}}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \\ = & 4 \int\limits_{0}^{1-\epsilon} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}+\int\limits_{\overset{0}{c_1}}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \\ & +\int\limits_{B D E} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}+\int\limits_{G H J} \frac{d t}{-\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \end{aligned}

where we have used the fact that in encircling a branch point, the sign of the radical is changed.

On B D E and G H J, we have t=1-\epsilon e^{i \theta} and t=-1+\epsilon e^{i \theta}, respectively. Then, the corresponding integrals equal

\begin{aligned} & \int\limits_{0}^{2 \pi} \frac{-i \epsilon e^{i \theta} d \theta}{\sqrt{\left(2-\epsilon e^{i \theta}\right)\left(\epsilon e^{i \theta}\right)\left\{1-k^{2}\left(1-\epsilon e^{i \theta}\right)^{2}\right\}}}=-i \sqrt{\epsilon} \int\limits_{0}^{2 \pi} \frac{e^{i \theta / 2} d \theta}{\sqrt{\left(2-\epsilon e^{i \theta}\right)\left\{1-k^{2}\left(1-\epsilon e^{i \theta}\right)^{2}\right\}}} \\ & \int\limits_{0}^{2 \pi} \frac{i \epsilon e^{i \theta} d \theta}{\sqrt{\left(\epsilon e^{i \theta}\right)\left(2-\epsilon e^{i \theta}\right)\left\{1-k^{2}\left(-1+\epsilon e^{i \theta}\right)^{2}\right\}}}=i \sqrt{\epsilon} \int\limits_{0}^{2 \pi} \frac{e^{i \theta / 2} d \theta}{\sqrt{\left(2-\epsilon e^{i \theta}\right)\left\{1-k^{2}\left(-1+\epsilon e^{i \theta}\right)^{2}\right\}}} \end{aligned}

As \epsilon \rightarrow 0, these integrals approach zero and we obtain

\int\limits_{\underset{C_2}{0}}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=4 \int\limits_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}+\int\limits_{\underset{C_1}{0}}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}

Now, if we write

z=\int\limits_{\substack{0 \\ C_{1}}}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}, \quad \text { i.e., } w=\operatorname{sn} z

then

z+4 K=\int\limits_{\substack{0 \\ C_{2}}}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}, \quad \text { i.e., } w=\operatorname{sn}(z+4 K)

and since the value of w is the same in both cases, \operatorname{sn}(z+4 K)=\operatorname{sn} z.

Similarly, we can establish the other results.

10.10

Related Answered Questions

Question: 10.10

Verified Answer:

From Problem 7.35, page 233, we have \beg...
Question: 10.47

Verified Answer:

By Problem 6.33, we have J_{n}(z)=\frac{1}{...
Question: 10.46

Verified Answer:

We have P=\Gamma\left(\frac{1}{m}\right) \G...
Question: 10.45

Verified Answer:

The Legendre polynomials P_{n}(z) a...
Question: 10.43

Verified Answer:

Using Problems 10.39, 10.42, 10.170, and the addit...
Question: 10.41

Verified Answer:

(a) We have K^{\prime}=\int_{0}^{1} \frac{d...
Question: 10.39

Verified Answer:

We have z=\int_{0}^{\phi} \frac{d \theta}{\...
Question: 10.36

Verified Answer:

We have \Gamma(z+1)=\int_{0}^{\infty} \tau^...
Question: 10.33

Verified Answer:

Since F(a, b ; c ; z)=1+\frac{a \cdot b}{1 ...