Question 7.20: Prove that the moment of a resistance of a beam of square se...

Prove that the moment of a resistance of a beam of square section, with its diagonal in the plane of bending is increased by flatting top and bottom corners as shown in Fig. 7.26 and that the moment of resistance is a maximum when y = \frac{8a}{9} . Find the percentage increase in moment of resistance also.

7.26
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :
Fig. 7.26 (a) shows a square section with diagonal AC vertical. Let the portions AEF and CGH be cut off.
Let I_1 = M.O.I. of the square ABCD about diagonal B.D.
Z_1 = Section modulus of square ABCD
M_1 = Moment of resistance of the square ABCD
I_2 = M.O.I. of the new section with cut off portion (i.e., M.O.I. of DEFBHG about diagonal BD)
Z_2 = Section modulus of new section
M_2 = Moment of resistance of the new section.
In Fig. 7.26 (a), diagonal AC = 2a

∴       Diagonal DB = AC = 2a.
Now moment of inertia of the square ABCD about N.A. (i.e., diagonal BD) is given by
∴      I_1 = M.O.I. of two triangles ABD and BCD about their base BD

=2 \times \frac{bh^3}{12} = 2\times \frac{2a \times a^3}{12} \quad (\text{ Here } b=2a \text{ and } h=a) \\ =\frac{a^4}{3}

Section modulus, Z_1=\frac{I_1}{y_{\max}}=\frac{(\frac{a^3}{3})}{a} \quad (\text{Here } y_{\max} = a) \\ \quad \quad \quad =\frac{a^4}{3}\times \frac{1}{a}=\frac{1}{3}a^3

Moment of resistance is given by,

M= σ × Z

∴        M_1= σ × Z_1=\sigma \times \frac{1}{3}a^3=\sigma \times 0.3333a^3        …(i)

Now the M.O.I. of the new section with cut off portion (i.e., M.O.I. of DEFBHG) about the diagonal BD is given by [Refer to Fig. 7.26 (b)].
I_2 = M.O.I. of four triangles (i.e., triangles DEK, FLB, DGH and HLB) plus M.O.I. of rectangle EFHG about N.A. (i.e., diagonal BD)

=\frac{4 \times bh^3}{12}+\frac{EF\times EG^3}{12}=\frac{4\times y \times y^3}{12}+\frac{2(a-y)\times(2y)^3}{12} \\ \space \\ (∵ \text{ Here }b=y, h = y, EF = 2(a – y) \text{ and } EG = 2y) \\ \space \\ =\frac{y^4}{3}+\frac{4}{3}(a-y)\times y^3=\frac{y^4}{3}+\frac{4ay^3}{3}-\frac{4y^4}{3}=\frac{4}{3}ay^3-y^4

and section modulus of new section is given by,

Z_2=\frac{I_2}{y_{\max}}=\frac{\frac{4}{3}ay^3-y^4}{y} \quad (∵  \text{Here } y_{\max} = y)  \\ \space \\ =\frac{4}{3}ay^2-y^3

Now moment of resistance of the new section is given by,

M_2=\sigma \times Z_2=\sigma \times [\frac{4}{3}ay^2-y^3]               …(ii)

The moment of the resistance of the new section will be maximum, if
\frac{dM_2}{dy}= 0. Hence differentiating equation (ii) w.r.t. y and equating it to zero, we get

\frac{d}{dy}[\sigma(\frac{4}{3}ay^2-y^3)]=0

or       \sigma(\frac{4}{3}a \times 2y -3y^2)=0      (∵ σ and a are constants)

or       \frac{4}{3}a \times 2y-3y^2=0        (∵ σ cannot be zero)

∴         3y^2=\frac{8}{3}a\times y

or        y=\frac{8}{3}\frac{a\times y}{3\times y}=\frac{8a}{9}            …(iii)

Substituting this value of y in equation (ii), we get

\left(M_2\right)_{\max }=\sigma \times\left[\frac{4}{3} \times a \times\left(\frac{8 a}{9}\right)^2-\left(\frac{8 a}{9}\right)^3\right]=\sigma \times\left[\frac{4 \times 64}{3 \times 81} a^3-\frac{512}{729} a^3\right] \\ \space \\ =\sigma × [1.0535a^3 – 0.7023a^3] = σ × 0.3512 a^3     …(iv)

But from equation (i), M_1 = σ × 0.3333 a^3

M_2 is more than M_1. And from equation (iii), it is clear that M_2 is maximum when

y=\pmb{\frac{8a}{9}.}

Now increase in moment of resistance

= (M_2)_{\max} – M_1 = σ × 0.3512 a^3 – σ × 0.3333 a^2 \\ = σ × 0.0179 a^3

Percentage increase in moment of resistance

=\frac{\text{Increase in moment of resistance}}{\text{Original moment of resistance}}\times 100 \\ \space \\ =\frac{\sigma \times 0.0719 \times a^3}{\sigma \times 0.3333\times a^3}\times 100 = \pmb{5.37\% .}

Related Answered Questions