Question 1.23: Prove the identities (a) sin³ θ= 3/4 sinθ  - 1/4 sin^3 θ, (b...

Prove the identities (a) \sin ^3 \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta , (b) \cos ^4 \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8} \text {. }

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}(a)  \sin ^3 \theta &=\left(\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)^3=\frac{\left(e^{i \theta}-e^{-i \theta}\right)^3}{8 i^3}=-\frac{1}{8 i}\left\{\left(e^{i \theta}\right)^3-3\left(e^{i \theta}\right)^2\left(e^{-i \theta}\right)+3\left(e^{i \theta}\right)\left(e^{-i \theta}\right)^2-\left(e^{-i \theta}\right)^3\right\} \\ &=-\frac{1}{8 i}\left(e^{3 i \theta}-3 e^{i \theta}+3 e^{-i \theta}-e^{-3 i \theta}\right)=\frac{3}{4}\left(\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)-\frac{1}{4}\left(\frac{e^{3 i \theta}-e^{-3 i \theta}}{2 i}\right) \\ &=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta \end{aligned} \begin{aligned}(b) \cos ^4 \theta &=\left(\frac{e^{i \theta}+e^{-i \theta}}{2}\right)^4=\frac{\left(e^{i \theta}+e^{-i \theta}\right)^4}{16} \\ &=\frac{1}{16}\left\{\left(e^{i \theta}\right)^4+4\left(e^{i \theta}\right)^3\left(e^{-i \theta}\right)+6\left(e^{i \theta}\right)^2\left(e^{-i \theta}\right)^2+4\left(e^{i \theta}\right)\left(e^{-i \theta}\right)^3+\left(e^{-i \theta}\right)^4\right\} \\ &=\frac{1}{16}\left(e^{4 i \theta}+4 e^{2 i \theta}+6+4 e^{-2 i \theta}+e^{-4 i \theta}\right)=\frac{1}{8}\left(\frac{e^{4 i \theta}+e^{-4 i \theta}}{2}\right)+\frac{1}{2}\left(\frac{e^{2 i \theta}+e^{-2 i \theta}}{2}\right)+\frac{3}{8} \\ &=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8} \end{aligned}

Related Answered Questions

Question: 1.20

Verified Answer:

We use the principle of mathematical induction. As...
Question: 1.17

Verified Answer:

(a) 6\left(\cos 240^{\circ}+i \sin 240^{\ci...
Question: 1.24

Verified Answer:

Let z=r e^{i \theta} be represent...