Question 1.23: Prove the identities (a) sin³ θ= 3/4 sinθ - 1/4 sin^3 θ, (b...
Prove the identities (a) \sin ^3 \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta , (b) \cos ^4 \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8} \text {. }
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
\begin{aligned}(a) \sin ^3 \theta &=\left(\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)^3=\frac{\left(e^{i \theta}-e^{-i \theta}\right)^3}{8 i^3}=-\frac{1}{8 i}\left\{\left(e^{i \theta}\right)^3-3\left(e^{i \theta}\right)^2\left(e^{-i \theta}\right)+3\left(e^{i \theta}\right)\left(e^{-i \theta}\right)^2-\left(e^{-i \theta}\right)^3\right\} \\ &=-\frac{1}{8 i}\left(e^{3 i \theta}-3 e^{i \theta}+3 e^{-i \theta}-e^{-3 i \theta}\right)=\frac{3}{4}\left(\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)-\frac{1}{4}\left(\frac{e^{3 i \theta}-e^{-3 i \theta}}{2 i}\right) \\ &=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta \end{aligned}
\begin{aligned}(b) \cos ^4 \theta &=\left(\frac{e^{i \theta}+e^{-i \theta}}{2}\right)^4=\frac{\left(e^{i \theta}+e^{-i \theta}\right)^4}{16} \\ &=\frac{1}{16}\left\{\left(e^{i \theta}\right)^4+4\left(e^{i \theta}\right)^3\left(e^{-i \theta}\right)+6\left(e^{i \theta}\right)^2\left(e^{-i \theta}\right)^2+4\left(e^{i \theta}\right)\left(e^{-i \theta}\right)^3+\left(e^{-i \theta}\right)^4\right\} \\ &=\frac{1}{16}\left(e^{4 i \theta}+4 e^{2 i \theta}+6+4 e^{-2 i \theta}+e^{-4 i \theta}\right)=\frac{1}{8}\left(\frac{e^{4 i \theta}+e^{-4 i \theta}}{2}\right)+\frac{1}{2}\left(\frac{e^{2 i \theta}+e^{-2 i \theta}}{2}\right)+\frac{3}{8} \\ &=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8} \end{aligned}
Related Answered Questions
Question: 1.21
Verified Answer:
We use the binomial formula
(a+b)^n=a^n+\l...
Question: 1.20
Verified Answer:
We use the principle of mathematical induction. As...
Question: 1.19
Verified Answer:
\begin{aligned} (a) z_1 z_2 &=\left\{...
Question: 1.17
Verified Answer:
(a) 6\left(\cos 240^{\circ}+i \sin 240^{\ci...
Question: 1.24
Verified Answer:
Let z=r e^{i \theta} be represent...
Question: 1.26
Verified Answer:
\begin{aligned} (a) {\left[3\left(\cos 40...
Question: 1.27
Verified Answer:
Let z_1=r_1\left(\cos \theta_1+i \sin \the...
Question: 1.29
Verified Answer:
(a) (-1+i)^{1 / 3}
\begin...
Question: 1.18
Verified Answer:
(a) Analytically. Let O be the starting point (see...
Question: 1.13
Verified Answer:
(a) The center can be represented by the complex n...